
0

StresStimulus v4.6

User Guide

StresStimulus v4.6

User Guide

StresStimulus v4.6

User Guide v1

INTRODUCTION - HOW IT WORKS 1

TABLE OF CONTENTS

1 Introduction7

1.1 How It Works.. 7

1.2 System Requirements... 8

1.3 Activating License... 9
1.3.1 Activate the license.. 9
1.3.2 Moving the license... 9
1.3.3 Advanced .. 9

2 Getting familiar with the User Interface12

2.1 Overview .. 12

2.2 Standalone and Add-on Versions .. 13

2.3 UI Layout.. 14
2.3.1 Workflow Tree UI... 15
2.3.2 Object (Left) Pane ... 16
2.3.3 Functional (Right) Pane... 18

2.4 Test Wizard .. 19

2.5 Uniform UI Elements ... 20

3 Test Structure23

4 Building Test Case25

4.1 Recording Test Case... 26
4.1.1 Recording with Web Browser .. 28
4.1.2 Recording from Other Sources .. 39
4.1.3 Creating Transactions ... 40
4.1.4 Recording HTTPS ... 41
4.1.5 Troubleshooting Recording.. 53

4.2 Other Methods of Creating Test Case.. 54
4.2.1 Open test... 54
4.2.2 Import from another test .. 54

User Guide v1

INTRODUCTION - HOW IT WORKS 2

4.2.3 Import session file.. 55
4.2.4 Clone test case.. 55
4.2.5 Add additional sessions to the existing or new test case.. 55

4.3 Post recording steps... 56
4.3.1 Purging requests to unwanted hosts.. 56
4.3.2 Purging sessions with unwanted content types.. 58
4.3.3 Running Autocorrelation .. 59
4.3.4 Getting Familiar with the Test Case... 61
4.3.5 Page Structure .. 73

4.4 Parameterizing dynamic tests .. 80
4.4.1 Types of Dynamic Requests.. 81
4.4.2 Manual Parameterization... 83
4.4.3 Automatic Parameterization... 130

4.5 Test Case object properties.. 166
4.5.1 Test Case: Think Time .. 166
4.5.2 Delay after the Test Case .. 167
4.5.3 Test Case: Caching Rules ... 168
4.5.4 Test Case: Session Persistence .. 170
4.5.5 Page Properties... 171
4.5.6 Request Properties.. 174

4.6 Other Test Case Elements .. 178
4.6.1 Authentication.. 178
4.6.2 Transactions.. 182
4.6.3 Loops .. 184
4.6.4 Response Validators ... 185
4.6.5 If...Then ... 188
4.6.6 Do...While.. 190
4.6.7 Delay... 193
4.6.8 Rendezvous Points.. 194
4.6.9 Skip-to-Next-Iteration... 194
4.6.10 Set-Cookie... 195

4.7 Managing Test Case(s).. 196
4.7.1 Creating Multiple Test Cases... 196
4.7.2 Exporting a Test Case ... 201
4.7.3 Editing and Deleting a Test Case .. 203
4.7.4 Running Multiple Test Cases... 203

5 Configuring Test208

5.1 Load Pattern .. 209
5.1.1 Steady Load .. 209
5.1.2 Step Load.. 210

User Guide v1

INTRODUCTION - HOW IT WORKS 3

5.2 Test Duration ... 211
5.2.1 Number of Iterations.. 212
5.2.2 Run Duration ... 213
5.2.3 Reaching Max VUs.. 214
5.2.4 Warm-up ... 215

5.3 Browser Settings... 216
5.3.1 Connections Per Host and Proxy... 218
5.3.2 User-Agent .. 219

5.4 Network Settings ... 220

5.5 Server and Agent Monitoring.. 222
5.5.1 KPI Thresholds.. 223
5.5.2 Windows Servers Monitoring ... 223
5.5.3 Linux/Unix Servers Monitoring... 228
5.5.4 Load Agents Monitoring... 234
5.5.5 Threshold Rules .. 235

5.6 Test Result Storage... 236
5.6.1 Reducing Test Storage Use... 239

5.7 Configuring Test Pass/Fail Qualification ... 240

5.8 Other Test Options .. 241
5.8.1 Host and Port Remapping ... 241
5.8.2 Change URI scheme (HTTP/HTTPS) .. 244
5.8.3 Dynatrace Integration .. 244
5.8.4 Connections Pools... 245

6 Running and Monitoring Test247

6.1 Starting Test .. 248

6.2 Runtime Dashboard .. 249
6.2.1 Layout ... 250
6.2.2 Controlling the Test ... 251
6.2.3 Monitoring Test Progress and Health... 252
6.2.4 Monitoring Performance .. 256

7 Analyzing Results265

7.1 Opening Previous Results .. 266

7.2 Opening an SQL CE file .. 267
7.2.1 Opening Agent SQL CE file ... 269

User Guide v1

INTRODUCTION - HOW IT WORKS 4

7.3 Test Result Tab.. 269
7.3.1 Summary View .. 270
7.3.2 Graph View.. 274
7.3.3 Detail View .. 275
7.3.4 Error View ... 284
7.3.5 VU Activity View .. 287
7.3.6 Waterfall View ... 289
7.3.7 Finding Hidden Errors.. 294

7.4 Page and Transaction Result Tab .. 297
7.4.1 Summary View .. 299
7.4.2 Performance View ... 301
7.4.3 Latency View... 304
7.4.4 Failure View... 305
7.4.5 Request View .. 306
7.4.6 VU Activity View .. 307
7.4.7 Waterfall View ... 309

7.5 Querying Test Log... 310

7.6 Finding Performance Errors ... 311
7.6.1 From Report .. 312
7.6.2 From Session Grid... 313

7.7 External Reports.. 314
7.7.1 Additional Options ... 316

7.8 Comparing Tests ... 317
7.8.1 Test Comparison Summary View .. 318
7.8.2 KPI Graph Comparison View... 323

8 Advanced Topics326

8.1 Distributed Testing.. 326
8.1.1 Controller and Agents.. 326
8.1.2 Attaching Agents to Controller ... 331
8.1.3 Configuring Load Distribution .. 332
8.1.4 Distributed Test Results... 333
8.1.5 Load Generator Performance .. 334

8.2 Automation .. 336
8.2.1 Command line interface for Standalone version .. 337
8.2.2 Command line interface for Add-on version... 337
8.2.3 Pre-run command line ... 338

8.3 Querying Test Repository... 338

8.4 Extensibility ... 340

User Guide v1

INTRODUCTION - HOW IT WORKS 5

8.4.1 Scriptable Variables... 340
8.4.2 Internal Scriptable Variables.. 342
8.4.3 Programming Scriptable Variables .. 344
8.4.4 External Scriptable Variables... 354
8.4.5 External Components .. 355

User Guide v1

INTRODUCTION - HOW IT WORKS 6

Search the User Guide section

User Guide v1

INTRODUCTION - HOW IT WORKS 7

1 INTRODUCTION

StresStimulus is a load testing tool for websites, web services, web and mobile applications
(collectively called websites). It is designed to be an essential component in the companies' web
performance strategy, from development to maintenance and capacity planning. StresStimulus
helps answer many performance related questions such as:

 Does a Web application’s responsiveness correspond to the target performance objectives?

 How many users can a website handle while maintaining acceptable responsiveness?

 What is a website’s operational ceiling and how does it behave once it is overloaded (e.g.
presents graceful error messages or refuses connections and crashes)?

 What are the performance bottlenecks that should be addressed first?

 What is the impact of new application releases on the response times?

 How many hardware resources are necessary to meet certain performance targets?

As opposed to other load testing tools, StresStimulus’s focus is on ease-of-use with websites of any
size and complexity.

1.1 How It Works

To make load testing more realistic, in order to test a website, StresStimulus records client actions
and server responses. After that, you can specify what performance conditions you need to
emulate and launch a test. StresStimulus instantiates multiple virtual users (VUs) and replays the
recorded actions. The web server receives simulated traffic and engages in operations as it is
accessed by the real users. While interacting with the server, StresStimulus closely monitors
performance metrics from the user’s perspective, but on the server side. It displays the test real-
time dashboard showing the progress of the main test parameters, and real-time performance
graphs, giving the first impression of the website's speed and scalability. After the test is complete,
StresStimulus aggregates collected information and generates various interactive reports with
actionable information that helps answer the performance questions from the previous chapter.

StresStimulus:

 Records user actions from a web browser, RIA, mobile device or other HTTP client.

 Simulates traffic anticipated from the user base. A very large number (up to a million or more) of
VUs can be instantiated.

 Realistically emulates the web production environment not only in terms of the amount of load,
but also in terms of application traffic content.

User Guide v1

INTRODUCTION - SYSTEM REQUIREMENTS 8

 Creates and configures test scripts using the UI without programming. The script editor is
available, but is optional.

 Automatically tests how a website works with various user entries, such as predetermined or
randomly generated business data.

 Autocorrelates session tokens, cookies and hidden fields in all major web platforms.

 Automatically discovers dynamic parameters and creates parameterization rules to maintain
high test fidelity.

 Monitors performance on the client and resources usage on the server side under different load
conditions.

 Aggregates performance details by request, page, transaction, test case, VU, and other criteria,
and generates customizable graphs and reports.

 Easily pinpoints performance bottlenecks due to high visibility into the test log stored in a
queryable database. For example, a waterfall chart of a page or a transaction under different
load conditions can be quickly displayed and compared side-by-side for any two VUs or test
iterations. It gives precise assessment of the user experience.

 Tracks down bugs causing errors or timeouts, which can only be detected under stress.
Typically, such bugs are missed in functional testing.

 Facilitates on-premise performance testing or in the cloud using, for example, Amazon WS.

To make load testing more realistic, the following application performance-impacting factors are
emulated:

 Browser behavior (caching, correlation, concurrent connections handling).

 Users’ behavior (think time, concurrency, independence, the composition of new and returning
users, composition of returning users restarting browser on every iteration or keeping it open).

 Network behavior (upstream and downstream bandwidth).

 User based geographic distribution, when multiple load generation agents in the cloud are
positioned in specified regions.

1.2 System Requirements

Windows Server 2016 R2 to 2003 or Windows 10 to 7

Microsoft .NET Framework 3.5 or later

Fiddler 2.3.4.4 or later - free download (optional)

6 GB disk space / 1GHz processor

1GB RAM (2GB+ highly recommended)

1.3 Activating License

All StresStimulus licensing options can be found in the licensing dialog. To bring up the licensing
dialog in the main menu naviga
to StresStimulus > License...

1.3.1 Activate the license

You can enter your serial number in the text box and click Activate button to activate the license. If
you have a floating license, enter the number number of VUs to activate in the VUs text box before
clicking the Activate button.

1.3.2 Moving the license

StresStimulus licenses can be moved from one machine to another. To move a license from an
activated machine, first click the Deactivate
the license by activating on any other machine.

1.3.3 Advanced

The following are advanced features and should only be used if activation did not work or you have
special licensing requirements. To bring up Adva
licensing dialog.

INTRODUCTION - ACTIVATING LICENSE

Activating License

All StresStimulus licensing options can be found in the licensing dialog. To bring up the licensing
dialog in the main menu navigate to Help > License... If you are using the Fiddler Addon version go

Activate the license

You can enter your serial number in the text box and click Activate button to activate the license. If
enter the number number of VUs to activate in the VUs text box before

Moving the license

StresStimulus licenses can be moved from one machine to another. To move a license from an
activated machine, first click the Deactivate button to deactivate the license. Then you can move
the license by activating on any other machine.

The following are advanced features and should only be used if activation did not work or you have
special licensing requirements. To bring up Advanced options go to the Advanced tab in the

User Guide v1

ACTIVATING LICENSE 9

All StresStimulus licensing options can be found in the licensing dialog. To bring up the licensing
te to Help > License... If you are using the Fiddler Addon version go

You can enter your serial number in the text box and click Activate button to activate the license. If
enter the number number of VUs to activate in the VUs text box before

StresStimulus licenses can be moved from one machine to another. To move a license from an
button to deactivate the license. Then you can move

The following are advanced features and should only be used if activation did not work or you have
nced options go to the Advanced tab in the

1.3.3.1 Automatic Deactivation

If StresStimulus is activated on a virtual machine it is recommended that automatic deactivation
checkbox is checked. This was StresStimulus license will automatically be
StresStimulus is closed.This way if the virtual machine is terminated, StresStimulus license will not
be lost.

1.3.3.2 Proxy Credentials

An active internet connection is necessary to activate the license. If your company uses a proxy
that requires authentication to connect to the internet, you can enter the credentials in the Proxy
Credential section.

1.3.3.3 Offline Activation

It is best to activate StresStimulus using online activation, this way the license can be easily moved
from one machine to another as described above. However, if you can't connect to the internet or to
StresStimulus licensing server, you can request an offline activation license. When you request an
offline activation, StresStimulus support will send you a license file that will lo
machine. During this time, the license will not be movable to another machine. Click the Request

INTRODUCTION - ACTIVATING LICENSE

Automatic Deactivation

If StresStimulus is activated on a virtual machine it is recommended that automatic deactivation
checkbox is checked. This was StresStimulus license will automatically be
StresStimulus is closed.This way if the virtual machine is terminated, StresStimulus license will not

Proxy Credentials

An active internet connection is necessary to activate the license. If your company uses a proxy
s authentication to connect to the internet, you can enter the credentials in the Proxy

Offline Activation

It is best to activate StresStimulus using online activation, this way the license can be easily moved
r as described above. However, if you can't connect to the internet or to

StresStimulus licensing server, you can request an offline activation license. When you request an
offline activation, StresStimulus support will send you a license file that will lo
machine. During this time, the license will not be movable to another machine. Click the Request

User Guide v1

ACTIVATING LICENSE 10

If StresStimulus is activated on a virtual machine it is recommended that automatic deactivation
checkbox is checked. This was StresStimulus license will automatically be deactivated when
StresStimulus is closed.This way if the virtual machine is terminated, StresStimulus license will not

An active internet connection is necessary to activate the license. If your company uses a proxy
s authentication to connect to the internet, you can enter the credentials in the Proxy

It is best to activate StresStimulus using online activation, this way the license can be easily moved
r as described above. However, if you can't connect to the internet or to

StresStimulus licensing server, you can request an offline activation license. When you request an
offline activation, StresStimulus support will send you a license file that will lock the license to the
machine. During this time, the license will not be movable to another machine. Click the Request

Offline Activation button to bring up the Offline Activation dialog. This dialog may also appear after
StresStimulus determines that ther

First, select the offline license expiration. You can either select from the following options:

 Permanent Offline Activation: The license will be locked on this machine for its duration and
cannot be transferred to another machine.

 Temporary Offline Activation: Select the offline license's latest expiration date. Only after this
date the unexpired license can be transferred to another machine. This way the license can be
transferred to another machine

Then check the checkbox to agree to bind the offline license to the machine and click the Save
Request File and save the license request file.

Finally, send the license request file to

Once your request is processed, you should receive your offline activation file. Copy the file into the
installation directory (for example %Program Files%
the offline activation.

INTRODUCTION - ACTIVATING LICENSE

Offline Activation button to bring up the Offline Activation dialog. This dialog may also appear after
StresStimulus determines that there is no available connection to the internet.

First, select the offline license expiration. You can either select from the following options:

Permanent Offline Activation: The license will be locked on this machine for its duration and
transferred to another machine.

Temporary Offline Activation: Select the offline license's latest expiration date. Only after this
date the unexpired license can be transferred to another machine. This way the license can be
transferred to another machine at a later time.

Then check the checkbox to agree to bind the offline license to the machine and click the Save
Request File and save the license request file.

Finally, send the license request file to support@stresstimulus.com for processing.

Once your request is processed, you should receive your offline activation file. Copy the file into the
installation directory (for example %Program Files%\Stimulus Technology\

User Guide v1

ACTIVATING LICENSE 11

Offline Activation button to bring up the Offline Activation dialog. This dialog may also appear after
e is no available connection to the internet.

First, select the offline license expiration. You can either select from the following options:

Permanent Offline Activation: The license will be locked on this machine for its duration and

Temporary Offline Activation: Select the offline license's latest expiration date. Only after this
date the unexpired license can be transferred to another machine. This way the license can be

Then check the checkbox to agree to bind the offline license to the machine and click the Save

for processing.

Once your request is processed, you should receive your offline activation file. Copy the file into the
\StresStimulus) to finish

User Guide v1

GETTING FAMILIAR WITH THE USER INTERFACE - OVERVIEW 12

2 GETTING FAMILIAR WITH

THE USER INTERFACE

Load testing is an elaborate and time-consuming process that requires special knowledge and
experience. StresStimulus is designed to simplify its adoption not only for QA professionals and test
analysts but also for developers, IT personnel and other website stakeholders with limited or no
experience in load testing. In order to achieve this result, several design principles, discussed in the
next section, are applied.

2.1 Overview

The StresStimulus UI follows several design principles targeted to make it easier to use:

1. Reflecting the testing workflow. The Workflow Tree is the centerpiece of the StresStimulus UI.
Every step in the load testing process has a corresponding node on the Workflow Tree. This makes
it easier for users to navigate through a multitude of StresStimulus options in the correct order.

2. Mirroring the Test Object Model (TOM) hierarchical structure. StresStimulus stores internal
data as an object model, where objects are joined in parent-child and other relationships. For
example, a Test Case (a) is an object which can have one or several child objects Parameters (b),
each of which is associated with a particular request (c). This internal structure can be quickly
discovered because a Parameter node (d) is located under the Build Test Case node (e) in the
Workflow Tree (f) and also each Parameter node is subordinate to a specific request in the Test
Case Tree. The parent-child relationship of UI elements corresponds to the TOM hierarchical
structure. Learning the UI helps to better understand TOM and vice versa.

User Guide v1

GETTING FAMILIAR WITH THE USER INTERFACE - STANDALONE AND ADD-ON VERSIONS

13

3. Consistency and uniformity. Common functions are implemented in the same way across all
UI areas. After getting familiar with one area, a user can use them in other areas, reducing the
learning time. For example, the same Find control is used on every grid and treeview for searching
objects of different types. For more details, see Uniform UI Elements.

4. Thinking of end-user. A special effort was made to avoid confusion as to what to do next. For
example, if you get lost and need to return back to the previously visited area, click Back on the
Workflow Tree toolbar several times until you return to the location you want to be at. This brings
the ease-of-use that is available in web browsers. Also, every control, parameter and configuration
option is accompanied by a description that appears on mouse-over in help boxes, tooltips or is
displayed on the bottom of the screen in the description area.

2.2 Standalone and Add-on Versions

The installer, by default, installs two versions of StresStimulus:

 Standalone version: implemented as a Windows application

 Add-on version: implemented as an add-on to Fiddler, a popular free web debugging proxy by
Telerik

Both versions have an almost identical feature set. The same UI elements are encompassed in
slightly different layouts, as described in UI Layout. Both versions use the same document format

User Guide v1

GETTING FAMILIAR WITH THE USER INTERFACE - UI LAYOUT 14

and can be interchangeably used to work with the same test. They also share the state and
configuration space. For example, after opening a test in the standalone version, it will appear in
the Recent list in the add-on version, and vice versa.

While very similar, each of the versions has its own benefits:

Standalone version benefits:

 Does not require Fiddler

 Is easier to use for non-Fiddler users due to less distraction from features unrelated to load
testing

Fiddler add-on version benefits:

 Tight integration with Fiddler allows to web debug and functional, performance and load test in
a single toolset.

 Fiddler features (such as multiple Inspectors, filtering sessions, timeline and auto-responders)
can be used to extend the load testing feature set. For example, it creates the ability to simplify
debugging and analysis of load tests.

Note: Standalone StresStimulus implements its own proxy listening on port 49386
(configurable from the Main Menu -> Options -> StresStimulus Options). It does not require
Fiddler to be installed, however, it can coexist with Fiddler. You can even run Fiddler and the
standalone version at the same time. Furthermore, when recording a test case in
StresStimulus, Fiddler will capture the same sessions because both proxies will be
automatically chained. However, while the standalone version is running, you can use Fiddler
but the StresStimulus add-on will not work.

2.3 UI Layout

The Standalone and add-on versions use the same layout consisting of three vertical panes (see
below):

 Central pane: Workflow Tree

 Left pane: Object area

 Right pane: Functional area

User Guide v1

GETTING FAMILIAR WITH THE USER INTERFACE - UI LAYOUT 15

In the diagram depicting the add-on version, the gray areas designate Fiddler UI elements. The F.
Tab elements show multiple tabs included in Fiddler and its various add-ons.

See also: User Interface Reference

2.3.1 Workflow Tree UI

The StresStimulus UI interface is designed to reflect the load testing workflow. The centerpiece of
the UI is the Workflow Tree, located in the center pane. It includes hierarchically organized
sections (nodes) for executing certain steps or functions in the load testing process. While moving
through the Workflow Tree from top to bottom, the user is guided to perform the necessary steps in
the proper order. For example, the top section of the Workflow Tree, Build Test Case (a), is used
for recording, configuring and verifying a test case. The middle section, Configure Test (b), allows
to setup load levels and other test run settings. Then, Run and Monitor Test (c) is used to execute
the test and Analyze Results (d) works with test results. This is the exact order in which load
testing is performed.

Some steps are necessary only in certain tests. For example, configuring load agents is needed
only in large-scale tests. Some other steps such as recording or running the test should be used in
every test. The easiest way to operate StresStimulus is to work your way from the top nodes to the
bottom nodes to ensure that all necessary steps are executed in the correct order without skipping.

Tip: If you need to return back to a previously visited node after navigating to other nodes,
click Back (e) on the Workflow Tree toolbar several times until you return to the node you
need. This helps novice users avoid getting lost while operating StresStimulus.

User Guide v1

GETTING FAMILIAR WITH THE USER INTERFACE - UI LAYOUT 16

2.3.2 Object (Left) Pane

StresStimulus stores load tests as a hierarchical Test Object Model (TOM). Every webpage, HTTP
session, extractor, parameter and validator is an object that is subordinate to its parent object and
may contain child objects. TOM is displayed in the left object pane. Objects can be presented in
one or two forms:

1. Test Case Tree with nodes corresponding to the TOM’s objects. The test case tree includes
a toolbar, a property grid that can be hidden and a status bar.

User Guide v1

GETTING FAMILIAR WITH THE USER INTERFACE - UI LAYOUT 17

2. Session Grid displays a certain subset of recorded or replayed session objects.

Each pane displays one or several toolbars with buttons for performing various actions.

User Guide v1

GETTING FAMILIAR WITH THE USER INTERFACE - UI LAYOUT 18

2.3.3 Functional (Right) Pane

Each node on the Workflow Tree has a corresponding window or dialog box displayed in the right
functional pane when the node selected. The functional pane can be presented in two forms:

1. Property grid with or without object tree. Nodes (a) in the object tree and their properties (b)
correspond to the TOM’s objects and their respective properties. For example, the Extractor node
and its Text Before property in the property grid (see User Interface Reference -> Extractors)
corresponds to the Extractor node and the Extractor's Text Before attribute (see Script Quick
Reference), respectively. The description of the selected property is displayed in the description
line on the bottom (c). The toolbar provides access to functional commands (d).

2. Grid, report or graph.

User Guide v1

GETTING FAMILIAR WITH THE USER INTERFACE - TEST WIZARD 19

2.4 Test Wizard

The Test Wizard is a helpful tool for an easy jump-start with StresStimulus. It guides a user through
all major steps of recording, configuring, running a test and presenting some major results. The
Test Wizard allows to complete a single load test with minimal or no knowledge of performance
testing or StresStimulus.

To launch the test wizard, click Record Test Case on the Workflow Tree (a) or click Test Wizard
(b) on the toolbar.

Additionally, the Test Wizard has the following benefits:

1. Expediting StresStimulus learning. While navigating through the Test Wizard steps, the
corresponding areas of the UI are highlighted to indicate how to executed the same step without
the wizard. This simplifies StresStimulus adoption.

User Guide v1

GETTING FAMILIAR WITH THE USER INTERFACE - UNIFORM UI ELEMENTS 20

2. Customizing the level of detail in the wizard. Initially, the wizard will guide you through all
relevant configuration steps. You have the option to skip certain wizard steps by selecting Do not
show... For example, you can skip configuring the target hosts list. The wizard will remember your
selection to skip the step next time.

3. Manual selecting wizard steps. The left wizard pane displays a step menu showing the
sequence of configuration steps. Typically a user will navigate through steps sequentially by
clicking Next. However, you can also click on the available step to change the normal execution
sequence to skip certain steps or to run a specific step. Unavailable steps are disabled. For
example, if the autocorrelation step was already completed automatically,

2.5 Uniform UI Elements

Common functions, provided below, are implemented the same way across all UI areas. This helps
to reduce learning time and increase the productivity of the testing process.

1. Uniform operations with objects. Objects, such as pages, requests, transactions, extractors,
parameters, and validators are displayed in the hierarchical treeviews which support 5 standard
operations: Create, Edit, Delete, Move, and Clone. Operations with objects can be invoked either
from the toolbar buttons or from the context menu when right-clicking on the object. Both of these
options display uniformly designed icons. The icon examples are provided below. As an alternative
to the Move button, you can drag and drop an object to a new location.

GETTING FAMILIAR WIT

Operation

Object type Create

Request

Page

Extractor

Validator

Transactions

Loops

2. Uniform toolbar operations in object and functional areas.
controls are present in toolbars across all windows:

a. Searching content of displaying elements.
position of every toolbar to search content of every grid and tree view displaying objects of different
types. The Next and Previous

b. Expand / Collapse on every treeview.
position on every toolbar above object treeviews.

c. Object trees coupled with property grids.
property grid, displaying every property, along with help in
meaning and available options. The user can change values of all non
property grid is a uniform data entry mechanism for configuring most of the StresStimulus test
parameters.

d. Help boxes / tooltips for all controls.
help boxes with brief instruction. Help boxes provide guidance through the load testing process.

GETTING FAMILIAR WITH THE USER INTERFACE - UNIFORM UI ELEMENTS

Operation

Create Edit Delete Move

Drag+Drop

Drag+Drop

Drag+Drop

2. Uniform toolbar operations in object and functional areas. The following commonly used
controls are present in toolbars across all windows:

a. Searching content of displaying elements. The same Find control is placed in the rightmost
position of every toolbar to search content of every grid and tree view displaying objects of different

Previous buttons allow search in both directions.

b. Expand / Collapse on every treeview. Expand and Collapse buttons are placed in the leftmost
position on every toolbar above object treeviews.

c. Object trees coupled with property grids. Treeviews of every object type are coupled with a
, displaying every property, along with help information explaining the property

meaning and available options. The user can change values of all non-read
property grid is a uniform data entry mechanism for configuring most of the StresStimulus test

ps for all controls. Every StresStimulus control and window has
with brief instruction. Help boxes provide guidance through the load testing process.

User Guide v1

UNIFORM UI ELEMENTS 21

Clone

Drag+Drop

Drag+Drop

Drag+Drop

The following commonly used

control is placed in the rightmost
position of every toolbar to search content of every grid and tree view displaying objects of different

buttons are placed in the leftmost

Treeviews of every object type are coupled with a
formation explaining the property

read-only properties. A
property grid is a uniform data entry mechanism for configuring most of the StresStimulus test

Every StresStimulus control and window has tooltips /
with brief instruction. Help boxes provide guidance through the load testing process.

User Guide v1

GETTING FAMILIAR WITH THE USER INTERFACE - UNIFORM UI ELEMENTS 22

Tip: If you use help boxes infrequently, you can change their behavior to pop up on-click. To
do so, check the box in the Main Menu -> StresStimulus Options.

3. Copy read-only continent to the clipboard. Sometimes it is necessary to copy read-only
values displayed in the UI into the clipboard. This information can be pasted while searching the
object model or documentation for a specific value or content. It can save time and prevent typos,
since no retyping is necessary. In StresStimulus, a value of every object, metrics and even
message content from grids, treeviews and message boxes can be selected and copied to the
clipboard.

User Guide v1

TEST STRUCTURE - UNIFORM UI ELEMENTS 23

3 TEST STRUCTURE

A StresStimulus Test is a self-contained project comprising of elements defining a specific function
or step in the load testing process. The test can be saved and then reopened from the
StresStimulus Main Menu by opening the main project file with extension .ssconfig. The test
elements can be divided into 4 categories corresponding to the 4 top-level nodes on the Workflow
Tree:

1. One or several Test Cases. Each test case includes:

 A sequence of recorded web sessions stored in a dedicated .saz file. Each web session
includes an HTTP request sent by the client and a corresponding server response to it.

 A set of objects, such as extractors, parameters, transactions, loops and validators, and their
properties stored in a .ssconfig file as an XML representing a hierarchical test object model
(TOM). A single .ssconfig file containing TOM for all test cases is created in a test.

 One or several optional datasets, each of which is stored in a separate .csv file. A dataset can
be used in more than one test case.

2. Test Configuration includes a set of objects defining test parameters such as a number of virtual
users, load pattern, test duration and test completion criteria. Test Configuration properties are
stored in the .ssconfig file as an XML a hierarchical object model.

3. Controls for running and monitoring Test.

4. Test Results for individual test runs. Each test run includes a test log along with collected
performance metrics stored in a SQL Server CE (compact edition) .sdf file.

Note: SQL Server can be used instead of SQL Server CE.

User Guide v1

TEST STRUCTURE - UNIFORM UI ELEMENTS 24

The Test file set includes:

 Main configuration file: <TestName > .ssconfig.

 A subfolder with the same name <TestName>, located in the same folder, includes the
following files:

o One or several session files <TestCaseName> .saz - one per test case.

o Optional <DatasetName>.csv files - (one per dataset).

o __Auth.csv file with test credentials (if applicable).

o Optional <TestRunName-Timestamp>.sdf file - one per previous test run. You can
archive or delete some of the .sdf file to hide or delete unimportant run results.

The default location of the test files is %My Documents%\Fiddler2\StresStimulus. If you need test
versioning, save every test version with the new name or use your external versioning (source
control) tool.

User Guide v1

BUILDING TEST CASE - UNIFORM UI ELEMENTS 25

4 BUILDING TEST CASE

Search Building Test Case section

A test case is a set of HTTP/S requests generated by a user’s clicks or actions that represent a
specific usage scenario. The test case represents an impact to website performance induced by a
single user. In some load testing literature, a test case is called Script.

A test can have one or several test cases. Every test case is created and configured independently.
The test case can be instantiated in StresStimulus by:

 Recording browser or other web client actions as a new test case.

 Creating from a set of HTTP sessions captured by a proxy.

 Importing a test case from a different test.

 Opening a previously stored test.

All steps of recording and configuring a test case are performed on the Main tab on the first two
sections in the Workflow Tree: Record Test Case and Build Test Case.

User Guide v1

BUILDING TEST CASE - RECORDING TEST CASE 26

4.1 Recording Test Case

The first step in load testing with

User Guide v1

BUILDING TEST CASE - RECORDING TEST CASE 27

StresStimulus is to record a test case. A test
script is automatically created by recording a
user navigation scenario.

The user's requests and server responses are
captured by a proxy and stored in
StresStimulus as test case objects.

Note: The add-on version uses Fiddler's
proxy. The Standalone version uses its
own proxy which can work side-by-side
with the Fiddler proxy.

To start recording, click Record Test Case in
the Workflow Tree. The Test Wizard will
display the Recording Source step.

Enter Test Case name (optional), then select
a recording source.

 To load test websites, select Web Browser,
then from the drop-down, select the
browser type and click Next. Browsers
installed on your computer will be on the
list. The following browsers are supported:
Internet Explorer, Firefox, Chrome, Opera,
Safari.

 To load test other client applications, such
as Silverlight or Flex, select Non-browser
applications, and then click Record.

 To load test mobile apps accessed from
external devices, select Mobile device,
then click Record.

 To open a previously saved test, select the
Open existing test and click Open.

 By default StresStimulus breaks down
requests into pages. You can disable
automatic page breakdown. To do so, un-
checked the Group requests into pages
box. This can be helpful when, instead of
tracking the performance of pages, you
prefer to track performance of transactions
which are used to group requests manually.
Disabling pages is also helpful when testing
Web services.

4.1.1 Recording with Web Browser

If you selected a browser as a recording
source, the Test Wizard will display
Browser Recording Settings
Enter initial URL and select a browser
cache option.

 If Private Mode is selected
(recommended), the private browsing
mode will be enabled, in which
browser cache is not used, so you
don't need to clear it. Some web
applications do not work in private
browsing mode. In this case, select
Normal mode. If you use any browser
except Internet Explorer, make sure
to clear cache (temporary Internet
files and cookies) before recording.
This is necessary to prevent the
browser from using cached data,
which case, the proxy will not capture
that traffic or empty 304 responses
will be captured. Internet Explorer
cache will be cleared automatically
and selectively.

 Then enter the first transaction name
(optional) and click Record
the web browser. If the browser is
running, a message will prompt to
close it first.

 During recording,
StresStimulus will take web page
screenshots. When you review your
test case, the screenshots are
displayed as you select the session
object on the test case tree in the

BUILDING TEST CASE - RECORDING TEST CASE

Recording with Web Browser

If you selected a browser as a recording
will display the

Settings step.
Enter initial URL and select a browser

is selected
(recommended), the private browsing
mode will be enabled, in which
browser cache is not used, so you
don't need to clear it. Some web

in private
browsing mode. In this case, select
Normal mode. If you use any browser
except Internet Explorer, make sure
to clear cache (temporary Internet
files and cookies) before recording.
This is necessary to prevent the
browser from using cached data, in
which case, the proxy will not capture
that traffic or empty 304 responses
will be captured. Internet Explorer
cache will be cleared automatically

Then enter the first transaction name
Record to launch

wser. If the browser is
running, a message will prompt to

StresStimulus will take web page
screenshots. When you review your
test case, the screenshots are
displayed as you select the session

e in the

User Guide v1

RECORDING TEST CASE 28

User Guide v1

BUILDING TEST CASE - RECORDING TEST CASE 29

request properties view. These
screenshots can help you remember
how the page looked like before a
new click occurred. If you do not wish
to take screenshots, un-check the
Take screenshots of pages box.

If you use several monitors, then
in order to successfully capture
webpage screenshots, display the
recording browser on the same
monitor as StresStimulus.
Otherwise screenshots may not
come out correctly.

 Typically static resources such as
images and style sheets have a very
little impact on website performance.
Therefore they are not recorded by
default. Excluding static resources
from performance testing allows to
emulate a greater number of virtual
users on the same hardware
resources. If you wish to record static
resources, check the Record static
content box.

If at least one test case already exists in
the Test, the following dialog will give a
choice to either replace the current test
case, or add a new test case.

After that the floating Recorder bar
will appear. StresStimulus is ready to
capture client actions from the
recording source. Click through the
application scenario that you want to
test. StresStimulus will record all user
actions.

During recording, the number of
captured sessions is displayed in the
recorder title bar. The list of captured
sessions will appear in the

User Guide v1

BUILDING TEST CASE - RECORDING TEST CASE 30

StresStimulus session grid (in the
standalone version) or in the Fiddler
grid (in the add-on version). If the
captured sessions counter in the
Recorder does not increment, check
Proxy Settings in Standalone Version.

To skip the recording of some pages,
click Pause in the Recorder . To
continue recording, click Resume .

When recording is finished, click Stop
in the Recorder or in StresStimulus. If
you record in the browser, it will be
closed. A new test case will be created.
StresStimulus will filter out unrelated
requests from other browsers or non-
browser processes and will create a
test case.

Note: Filtering unrelated requests
is based on checking initiated
processes. Filtering may not work
when security software installed
on the test machine masks the
initiated processes (e.g.
Kaspersky security software
marks all requests as issued by
AVP process). To restore filtering,
disable such security software.

Note: StresStimulus supports
system proxy automatically. Some
companies use a proxy that
requires custom configuration. In
this case, the recorder may not
capture traffic by default.
StresStimulus will display an error
message recommending you
modify your proxy settings if this
occurs.

User Guide v1

BUILDING TEST CASE - RECORDING TEST CASE 31

4.1.1.1 Proxy Settings in Standalone Version

The standalone version is designed to turn the proxy on automatically when you start recording and
remove the proxy when you close the recorder. This is necessary for the recorder to capture traffic.

While automatic proxy configuration works in most cases, sometimes it fails. In this case, the
recorder will not capture the traffic. There are several possible reasons for this. For example:

 There is a policy set that prevents the proxy from being changed

 Other software like security / networking / vpn / malware is resetting the proxy

In such cases, the proxy configuration should be completed manually. To do so, follow these
troubleshooting Instructions:

After you start recording in StresStimulus, it registers itself as the system proxy. You can verify that
StresStimulus is correctly configured by using the following steps:

1. Make sure you are in recording mode and the recorder window is visible.

2. Open Internet Explorer if it is not already open.

3. From Internet Explorer main menu, click Tools > Internet Options. In the dialog (a), select the
Connections tab (b). Click LAN Setting (c). In the dialog (d) click Advanced (e). By default,
StresStimulus proxy uses port 49386 (f).

4. If the proxy is already specified correctly, then the proxy is correct. Otherwise, enter these
settings manually.

User Guide v1

BUILDING TEST CASE - RECORDING TEST CASE 32

Tip: Port 49386 is the default StresStimulus listening port. You can change this port in
StresStimulus main menu Options > Options...

Checking Upstream Proxy Settings

If accessing a web application under the test requires using your company proxy, then
StresStimulus will try to automatically chain to it by reading system proxy settings. If the upstream
proxy information cannot be accessed through the system proxy, you need to select the Manual
Proxy Settings option and specify the company proxy host and port..

In the main menu go to Options > Gateway Settings
dialog. Here you can select to use the system proxy settings, input manual proxy address and port,
or use no proxy.

4.1.1.2 Upstream Proxy Settings in Standalone Version

If your web client is configured to use an upstream proxy,
chain its proxy with the upstream proxy by reading system proxy settings. While automatic
configuration works in most cases, sometimes it fails because of restrictive security policies,
interference with other software or if the upstream proxy information cannot be accessed through
the system proxy.

In such cases, the upstream proxy configuration should be completed manually. In the main menu
go to Options > Gateway Settings

Select Manual Proxy Settings
proxy settings or use no proxy.

BUILDING TEST CASE - RECORDING TEST CASE

Options > Gateway Settings to open the StresStimulus Gateway Settings
dialog. Here you can select to use the system proxy settings, input manual proxy address and port,

Upstream Proxy Settings in Standalone Version

If your web client is configured to use an upstream proxy, then during recording StresStimulus will
chain its proxy with the upstream proxy by reading system proxy settings. While automatic
configuration works in most cases, sometimes it fails because of restrictive security policies,

are or if the upstream proxy information cannot be accessed through

In such cases, the upstream proxy configuration should be completed manually. In the main menu
Options > Gateway Settings to open the StresStimulus Gateway Settings

Manual Proxy Settings and specify a host and port. You can also select use the system
proxy settings or use no proxy.

User Guide v1

RECORDING TEST CASE 33

StresStimulus Gateway Settings
dialog. Here you can select to use the system proxy settings, input manual proxy address and port,

then during recording StresStimulus will
chain its proxy with the upstream proxy by reading system proxy settings. While automatic
configuration works in most cases, sometimes it fails because of restrictive security policies,

are or if the upstream proxy information cannot be accessed through

In such cases, the upstream proxy configuration should be completed manually. In the main menu
to open the StresStimulus Gateway Settings dialog.

and specify a host and port. You can also select use the system

4.1.1.3 Checking Proxy Settings

Fiddler automatically modifies default proxy settings as described in the
However when StresStimulus is selected in Fiddler, the Fiddler proxy is disabled and default proxy
settings are restored. This is necessary to make sure that Internet tr
applications does not interfere with StresStimulus test traffic during the test run. Fiddler proxy
settings are re-enabled again after recording or when the user navigates to a tab other than
StresStimulus.

Note: If your company does not allow automatic proxy settings, enter proxy settings
manually. Change the port number to the Fiddler listening port 8888.

4.1.1.4 Chaining to an Upstream Proxy

If the proxy settings described above are correct, but you still have issues with recording or
accessing your website, then the problem may be related to a company (upstream) proxy. If such
proxy is required for accessing relevant websites, then HTTP requests from the web browser that
travel through StresStimulus or Fiddler, must be routed to the Co
StresStimulus support automatic chaining to the upstream proxy. If the automatic chaining does not
work, then configure the upstream proxy chain manually. Use the StresStimulus add
to Fiddler Tools > Fiddler Options

BUILDING TEST CASE - RECORDING TEST CASE

Checking Proxy Settings

Fiddler automatically modifies default proxy settings as described in the Fiddler documentation
However when StresStimulus is selected in Fiddler, the Fiddler proxy is disabled and default proxy
settings are restored. This is necessary to make sure that Internet traffic initiated by other
applications does not interfere with StresStimulus test traffic during the test run. Fiddler proxy

enabled again after recording or when the user navigates to a tab other than

oes not allow automatic proxy settings, enter proxy settings
manually. Change the port number to the Fiddler listening port 8888.

Chaining to an Upstream Proxy

If the proxy settings described above are correct, but you still have issues with recording or
accessing your website, then the problem may be related to a company (upstream) proxy. If such
proxy is required for accessing relevant websites, then HTTP requests from the web browser that
travel through StresStimulus or Fiddler, must be routed to the Company proxy. Fiddler and
StresStimulus support automatic chaining to the upstream proxy. If the automatic chaining does not
work, then configure the upstream proxy chain manually. Use the StresStimulus add

Tools > Fiddler Options > Gateway to specify your upstream proxy info.

User Guide v1

RECORDING TEST CASE 34

Fiddler documentation.
However when StresStimulus is selected in Fiddler, the Fiddler proxy is disabled and default proxy

affic initiated by other
applications does not interfere with StresStimulus test traffic during the test run. Fiddler proxy

enabled again after recording or when the user navigates to a tab other than

oes not allow automatic proxy settings, enter proxy settings

If the proxy settings described above are correct, but you still have issues with recording or
accessing your website, then the problem may be related to a company (upstream) proxy. If such
proxy is required for accessing relevant websites, then HTTP requests from the web browser that

mpany proxy. Fiddler and
StresStimulus support automatic chaining to the upstream proxy. If the automatic chaining does not
work, then configure the upstream proxy chain manually. Use the StresStimulus add-on version, go

to specify your upstream proxy info.

User Guide v1

BUILDING TEST CASE - RECORDING TEST CASE 35

If the options Use System Proxy and Automatically Detect Proxy using WPAD do not work, use
Manual Proxy Configuration (g).

Enter Proxy string on the first line in (h) the following format:

http=<CorpProxy>:<port>;https=<SecureProxy>:<secureport>;

Enter hosts that should be not routed through the Proxy on the second line (Bypass list) separated
by ";" (i)

Your corporate proxy and port information for HTTP and HTTPS protocols can be found in the
Internet Explorer -> Internet options -> Connections -> LAN settings -> Advanced (j). The hosts that
should bypass Proxy should be copied from the Exception list (k). Take a note of this information
when Fiddler is closed.

User Guide v1

BUILDING TEST CASE - RECORDING TEST CASE 36

User Guide v1

BUILDING TEST CASE - RECORDING TEST CASE 37

Note: If IE uses an auto-configuration script file for configuring corporate proxy, configure it to
use the Fiddler proxy first. If the script is impossible to disable due to lack of permissions, you
may need to use a different browser for recording, such as FireFox.

4.1.1.5 Configuring Firefox

The StresStimulus recorder automatically routes web traffic from Firefox, however if it doesn't you
can set the settings manually.

In Firefox go to Tools > Options > Advanced. Select the Network tab.

Under Configuration, click Settings and select the Use system proxy settings radio button.

In order to set up Firefox to capture HTTPS traffic click here.

4.1.1.6 Automatic Clearing Cache in IE

When recording a test case from a web browser, using cache should be avoided to allow all
requests to be recorded.

The easiest way to do this is to select
Browsing mode. This way the browser will bypass the cache automatically.

However, some websites and web applications don't wo
the cache must be cleared manually before recording starts.

To assist with clearing cache, the StresStimulus recorder has a browser cache settings shortcut
(available for Internet Explorer only). Click the
dialog.

The recorder when working with Internet Explorer can automatically and selectively clear only
cached resources related to the tested websites. Such targeted cache clearing is faster and allows
to preserve other cached content.

BUILDING TEST CASE - RECORDING TEST CASE

Automatic Clearing Cache in IE

When recording a test case from a web browser, using cache should be avoided to allow all

The easiest way to do this is to select Private mode that will launch IE or other browsers in Private
Browsing mode. This way the browser will bypass the cache automatically.

However, some websites and web applications don't work without the browser cache. In this case,
the cache must be cleared manually before recording starts.

To assist with clearing cache, the StresStimulus recorder has a browser cache settings shortcut
(available for Internet Explorer only). Click the Cache button in the recorder to bring up the cache

The recorder when working with Internet Explorer can automatically and selectively clear only
cached resources related to the tested websites. Such targeted cache clearing is faster and allows

eserve other cached content.

User Guide v1

RECORDING TEST CASE 38

When recording a test case from a web browser, using cache should be avoided to allow all

that will launch IE or other browsers in Private
Browsing mode. This way the browser will bypass the cache automatically.

rk without the browser cache. In this case,

To assist with clearing cache, the StresStimulus recorder has a browser cache settings shortcut
button in the recorder to bring up the cache

The recorder when working with Internet Explorer can automatically and selectively clear only
cached resources related to the tested websites. Such targeted cache clearing is faster and allows

User Guide v1

BUILDING TEST CASE - RECORDING TEST CASE 39

StresStimulus maintains a Clear Cache
Domain List. It includes names of the domains
from which resources will be automatically
purged from the browser cache before
recording. To configuring cache clearing
options, click Cache (a) on the recorder. A
Clear Browser Cache dialog (b) will appear.
Follow these steps:

 Check the Clear box (c) to automatically
clear resources downloaded from the
domains on the list. The resources will be
purged from the browser cache before
recording.

 Click the View/Edit link (d) to access the
Clear Cache Domain list. This list can be
also accessed from the Main Menu ->
Hosts.

Note: The All hosts targeted during the
test recording are automatically added to
the Clear Cache Domain list, used for
automatic browser cache clearing.

 Check the After Recording box (e) to
automatically add new domains targeted
during recording to the Clear Cache for
Domain list. Next time the recorder will
clear these domains from the cache as well.

 Select resources (f) you want to clear:
temporary Internet files or/and cookies.

4.1.2 Recording from Other Sources

After the floating Recorder bar appeared, StresStimulus is ready to capture client actions from a
non-browser recording source such as Silverlight or Adobe AIR application or for mobile apps.
Navigate the tested application. When recording is finished, click Stop in the Recorder or in
StresStimulus. A new test case will be created.

Unlike recording from a web browser, where StresStimulus automates several serv
when recording from other sources, you are responsible to provide the following service functions
manually.

 Make sure that the test case is recorded from the beginning of the client session. All initial
steps, including session initiation
case will be incomplete that will cause errors.

 If your non-browser or mobile application uses client cache, make sure to clear it before
recording. This is necessary to prevent the browser from
test case will miss some HTTP sessions.

 StresStimulus will capture sessions from all processes on the machine without filtering,
including unrelated to the test case sessions. During recording, close all browsers and o
unnecessary HTTP clients. After recording is complete, delete all unrelated sessions from the
test case.

 If you are recording from a mobile device and wish to add transactions during recording, you
must click the Start Transaction

4.1.2.1 Recording from Mobile Devices

StresStimulus can capture traffic from a mobile app. All mobile devices which allow you to set a
proxy, such as an iPhone/iPad, Android, Windows phone or Blackberry are supported.
device has to be connected through Wi
connected. In StresStimulus select
network proxy settings to point to the StresStimulus ma
Fiddler add-on or 49386 if using the standalone version (these are both the default ports and can
be changed).

For more information on configuring Fiddler to capture traffic from another machine, check
source. Start navigating through a test scenario on the mobile device. When recording is finished,
click Stop in the Recorder or in StresStimulus. A new test case

4.1.3 Creating Transactions

BUILDING TEST CASE - RECORDING TEST CASE

Unlike recording from a web browser, where StresStimulus automates several serv
when recording from other sources, you are responsible to provide the following service functions

Make sure that the test case is recorded from the beginning of the client session. All initial
steps, including session initiation information and login, must be captured. Otherwise, the test
case will be incomplete that will cause errors.

browser or mobile application uses client cache, make sure to clear it before
recording. This is necessary to prevent the browser from using cached data, in which case, the
test case will miss some HTTP sessions.

StresStimulus will capture sessions from all processes on the machine without filtering,
including unrelated to the test case sessions. During recording, close all browsers and o
unnecessary HTTP clients. After recording is complete, delete all unrelated sessions from the

If you are recording from a mobile device and wish to add transactions during recording, you
Start Transaction button to create transaction after typing the transaction name.

Recording from Mobile Devices

StresStimulus can capture traffic from a mobile app. All mobile devices which allow you to set a
proxy, such as an iPhone/iPad, Android, Windows phone or Blackberry are supported.
device has to be connected through Wi-Fi to the same network that the StresStimulus machine is
connected. In StresStimulus select Mobile from the record list. On the mobile device, set the
network proxy settings to point to the StresStimulus machine's IP and set the port to

using the standalone version (these are both the default ports and can

For more information on configuring Fiddler to capture traffic from another machine, check
. Start navigating through a test scenario on the mobile device. When recording is finished,

or in StresStimulus. A new test case will be created.

Creating Transactions

User Guide v1

RECORDING TEST CASE 40

Unlike recording from a web browser, where StresStimulus automates several service functions,
when recording from other sources, you are responsible to provide the following service functions

Make sure that the test case is recorded from the beginning of the client session. All initial
information and login, must be captured. Otherwise, the test

browser or mobile application uses client cache, make sure to clear it before
using cached data, in which case, the

StresStimulus will capture sessions from all processes on the machine without filtering,
including unrelated to the test case sessions. During recording, close all browsers and other
unnecessary HTTP clients. After recording is complete, delete all unrelated sessions from the

If you are recording from a mobile device and wish to add transactions during recording, you
nsaction after typing the transaction name.

StresStimulus can capture traffic from a mobile app. All mobile devices which allow you to set a
proxy, such as an iPhone/iPad, Android, Windows phone or Blackberry are supported. The mobile

Fi to the same network that the StresStimulus machine is
from the record list. On the mobile device, set the

chine's IP and set the port to 8888 if using
using the standalone version (these are both the default ports and can

For more information on configuring Fiddler to capture traffic from another machine, check this
. Start navigating through a test scenario on the mobile device. When recording is finished,

will be created.

User Guide v1

BUILDING TEST CASE - RECORDING TEST CASE 41

A transaction is a set of sequential requests representing a meaningful step in a test scenario. It is
used to track performance characteristics of a specific business transaction that includes several
user actions. Transactions add another level of performance tracking in addition to requests and
pages.

You can define transactions while recording a test case or after the test case is created.

To create the first transaction, enter its name
in the Test Wizard when prompted.

To create a transaction during the recording,
enter the transaction name in the textbox on
the recorder and complete navigating through
transaction steps.

Entering a new transaction name will
designate the end of the current transaction
and the beginning of the subsequent
transaction.

To complete the current transaction without
creating a new transaction, clear the
transaction name from the box on the
recorder.

Repeat these steps to create more
transactions if necessary. You will be able to
modify any transaction property after of the
test case is created, as described in
Transactions section.

4.1.4 Recording HTTPS

By default, support for HTTPS is not enabled in StresStimulus or in Fiddler. Before testing your first
secure website, you need to enable support for HTTPS. This is a one-time process.

4.1.4.1 Enabling HTTPS in Standalone Version

In order to record HTTPS traffic, you need to trust the StresStimulus root certificate. This should be
done only once per machine. There are several ways this can be done.

During Installation

During installation the installer will prompt to trust the StresStimulus root certificate. Tick the Install
StresStimulus certificate for standalone version checkbox and click Next.

User Guide v1

BUILDING TEST CASE - RECORDING TEST CASE 42

A Windows confirmation dialog will appear next, where you can confirm that you trust the root
certificate upon which it will be added to trusted Certificate Authorities.

If you are also installing the StresStimulus Fiddler addon, you can also install the Fiddler
Certificate root the same way by ticking the
checkbox. You will get another Windows confirmation dialog to confirm t

In the Application

If you chose not to trust StresStimulus root certificate, you can trust it inside StresStimulus
application.

In StresStimulus menu go to Options > HTTPS...
HTTPS checkbox. The same Windows confirmation dialog will appear as above. Click Yes to trust
StresStimulus certificate.

BUILDING TEST CASE - RECORDING TES

If you are also installing the StresStimulus Fiddler addon, you can also install the Fiddler
Certificate root the same way by ticking the Install Fiddler certificate for add
checkbox. You will get another Windows confirmation dialog to confirm t

If you chose not to trust StresStimulus root certificate, you can trust it inside StresStimulus

Options > HTTPS... In the dialog, tick the Enable testing over
checkbox. The same Windows confirmation dialog will appear as above. Click Yes to trust

User Guide v1

RECORDING TEST CASE 43

If you are also installing the StresStimulus Fiddler addon, you can also install the Fiddler
Install Fiddler certificate for add-on version

checkbox. You will get another Windows confirmation dialog to confirm trusting the certificate.

If you chose not to trust StresStimulus root certificate, you can trust it inside StresStimulus

Enable testing over
checkbox. The same Windows confirmation dialog will appear as above. Click Yes to trust

Manually Enabling HTTPS

Sometimes the above two methods may not work for various reasons, including security settings. If
this is the case, then your HTTPS traffic will not be captured. To fix this issue, the certificate trust
should be enabled manually.

First, you need to export StresStimulus root certificate. In the StresStimulus main menu go to
Options > HTTPS... to open the HTTPS option

Click the Export Root Certificate
location.

Open Internet Explorer and in the main menu go to

In the Internet Options dialog select the

BUILDING TEST CASE - RECORDING TEST CASE

Sometimes the above two methods may not work for various reasons, including security settings. If
e, then your HTTPS traffic will not be captured. To fix this issue, the certificate trust

First, you need to export StresStimulus root certificate. In the StresStimulus main menu go to
to open the HTTPS options dialog.

Export Root Certificate button and in the save file dialog, provide the certificate save

and in the main menu go to Tools > Internet Options

In the Internet Options dialog select the Content Tab and click the Certificates

User Guide v1

RECORDING TEST CASE 44

Sometimes the above two methods may not work for various reasons, including security settings. If
e, then your HTTPS traffic will not be captured. To fix this issue, the certificate trust

First, you need to export StresStimulus root certificate. In the StresStimulus main menu go to

button and in the save file dialog, provide the certificate save

Tools > Internet Options.

Certificates button.

User Guide v1

BUILDING TEST CASE - RECORDING TEST CASE 45

In the certificates dialog, select the Trusted Root Certification Authorities tab and click the
Import... button.

User Guide v1

BUILDING TEST CASE - RECORDING TEST CASE 46

Follow the certificate wizard. In the second step, specify the file path of the previously exported
certificate. Click next until the wizard completes the import.

User Guide v1

BUILDING TEST CASE - RECORDING TEST CASE 47

If you are using Firefox browser for recording then click here to see how to enable HTTPS in
Firefox.

4.1.4.2 Enabling HTTPS in Fiddler Version

In order to record HTTPS traffic, you need to trust the Fiddler root certificate. This should be done
only once per machine. There are several ways this can be done.

During Installation

During installation the installer will prompt to trust the Fiddler root certificate. Tick the Install
Fiddler certificate for add-on version checkbox and click Next.

User Guide v1

BUILDING TEST CASE - RECORDING TEST CASE 48

A Windows confirmation dialog will appear next, where you can confirm that you trust the root
certificate upon which it will be added to trusted Certificate Authorities.

User Guide v1

BUILDING TEST CASE - RECORDING TEST CASE 49

You can also install the StresStimulus Certificate root the same way by ticking the Install
StresStimulus certificate for standalone version checkbox. You will get another Windows
confirmation dialog to confirm trusting the certificate.

In Fiddler

When using the add-on version, Fiddler should be configured to decrypt HTTPS traffic. Follow
these steps:

1. In Fiddler's main menu select Tools -> Fiddler Options and click the HTTPS tab.

2. Check three boxes:

o Capture HTTPS CONNECTs

User Guide v1

BUILDING TEST CASE - RECORDING TEST CASE 50

o Decrypt HTTPs traffic

o Ignore server certificate errors and click OK

3. Restart Fiddler

4. If the recorder was open, click Close Recorder and then re-open it from StresStimulus.

Note: Fiddler uses a "man-in-the-middle" technique in order to decrypt HTTPS traffic. For
more details check this source.

Sometimes after enabling HTTPS and with Fiddler running, secure pages do not appear in the
browser and an error message is displayed instead. In some cases, this happens because the
Fiddler certificate was created using incorrect settings. Make sure the MakeCert engine is used to
generate the certificates. For more information click here.

In some cases, the error pages displayed in the browser because your Web server uses HTTPS
protocols that are not enabled in Fiddler by default. after installation, Fiddler is configured to
support SSL3 and TLS1.0. For example, if your server uses TLS1.1, then to add this protocol, click
the Protocols link and in the appeared dialog append the missing protocol.

4.1.4.3 HTTPS on mobile devices

When recording HTTPS traffic from mobile
root certificate. You need to install the root certificate only once on a device.

Standalone version

1. On the mobile device, open a browser and navigate to the
http://{StresStimulus_IP}:{StresStimulus_

a. StresStimulus_IP is the IP address of the machine that has StresStimulus running

b. StresStimulus_port is the listening port of StresStimulus, 49386 by default.

2. Accept all the prompts to add this certificate to the trusted repository list.

3. Navigate to the website or app you want to test.

Fiddler a dd-on version

 For iOS devices: section Decrypt HTTPS Traffic from iOS Devices

 For Android devices: section

4.1.4.4 Troubleshooting HTTPS issues

Sometimes during recording, HTTPS pages do not appear in the browser and an error message i
displayed instead.

BUILDING TEST CASE - RECORDING TEST CASE

HTTPS on mobile devices

When recording HTTPS traffic from mobile devices the first step is to download the StresStimulus
root certificate. You need to install the root certificate only once on a device.

On the mobile device, open a browser and navigate to the
http://{StresStimulus_IP}:{StresStimulus_Port}/root.cer

StresStimulus_IP is the IP address of the machine that has StresStimulus running

StresStimulus_port is the listening port of StresStimulus, 49386 by default.

Accept all the prompts to add this certificate to the trusted repository list.

Navigate to the website or app you want to test.

Decrypt HTTPS Traffic from iOS Devices in

ices: section Decrypt HTTPS in this article.

Troubleshooting HTTPS issues

Sometimes during recording, HTTPS pages do not appear in the browser and an error message i

User Guide v1

RECORDING TEST CASE 51

devices the first step is to download the StresStimulus
root certificate. You need to install the root certificate only once on a device.

StresStimulus_IP is the IP address of the machine that has StresStimulus running

StresStimulus_port is the listening port of StresStimulus, 49386 by default.

Accept all the prompts to add this certificate to the trusted repository list.

in this article.

Sometimes during recording, HTTPS pages do not appear in the browser and an error message is

User Guide v1

BUILDING TEST CASE - RECORDING TEST CASE 52

In some cases, this happens because a required security protocol is not enabled. For example, the
web server uses a security protocol such as TLS 1.2 which by default is not enabled in Fiddler (or
StresStimulus). This situation is described here.

To fix the situation, follow these steps:

1. Make sure that you have installed the latest version of Fiddler 4. Fiddler 4 is available here

2. Start Fiddler

3. Hit Ctrl+R to bring up the custom rules editor.

4. In the appeared script, find the "OnBeforeRequest" method and add the following line inside:

oSession["x-OverrideSslProtocols"] = " ssl3;tls1.0;tls1.1;tls1.2";
5. Save the script
6. Use the StresStimulus add-on version. Try recording the test case with HTTPS
pages again

4.1.4.5 Capture HTTPS traffic from Firefox

First, export the StresStimulus certificate. In the StresStimulus main menu go to Options >
HTTPS... to open the HTTPS options dialog.

Click the Export Root Certificate button and in the save file dialog, provide the location where you
want to save the certificate.

In Firefox go to Tools > Options > Advanced. Select the Certificates tab. Click the View
Certificates button. Go to the Authorities tab.

Click the Import button and provide the saved certificate's location.

User Guide v1

BUILDING TEST CASE - RECORDING TEST CASE 53

In order to enable HTTPS in Firefox for Fiddler, refer to this link
http://docs.telerik.com/fiddler/configure-fiddler/tasks/firefoxhttps.

4.1.5 Troubleshooting Recording

The following table will assist you with troubleshooting your recording problem.

Standalone Version

IE or Other Clients

Troubleshooting Proxy
Settings

Proxy Settings in
Standalone Version

Troubleshooting
HTTPS Settings

Enabling HTTPS

Firefox

Troubleshooting Proxy
Settings

Configuring Firefox

Add-on Version

IE or Other Clients

Troubleshooting Proxy
Settings

Proxy Settings in
Fiddler Version

Troubleshooting HTTPS
Settings

Enabling HTTPS in
Fiddler Version

Firefox

Troubleshooting Proxy
Settings

Configuring Firefox for
Fiddler

User Guide v1

BUILDING TEST CASE - OTHER METHODS OF CREATING TEST CASE 54

Troubleshooting
HTTPS Settings

Capture HTTPS
Traffic from Firefox

Troubleshooting
HTTPS Settings

Capture HTTPS Traffic
from Firefix in Fiddler

4.2 Other Methods of Creating Test

Case

4.2.1 Open test

To open a previously saved Test, select Open Test (a) or Recent Tests (b) from the StresStimulus
Main Menu. From the Select Recording Source step in the Test Wizard, select Open Test.

4.2.2 Import from another test

To import Test Cases from another Test, in the Managing Test Case(s) section (c), click Import
Test Cases From Another Test (d) on the toolbar and then select a .ssconfig file and click Open.
All test cases from the selected test will be imported into the current test. All test objects will be
copied into the .ssconfig file of the current test, and all .saz files with sessions will be copied into
the current folder.

Tip: If you need to import some, but not all test cases, after import, delete the test cases you
do not need.

User Guide v1

BUILDING TEST CASE - OTHER METHODS OF CREATING TEST CASE 55

4.2.3 Import session file

To import a previously saved session file, in the Managing Test Case(s) section, click Open a
session file as a Test Case and select a Fiddler file (.saz) or HTTP archive file (.har). The
selected file will be imported as a new Test Case.

4.2.4 Clone test case

To clone the selected Test Case, in the Managing Test Case(s) section, click Clone Test Case (f)
on the toolbar.

4.2.5 Add additional sessions to the existing or new test case

To create a test case using sessions captured in the session grid or add to existing test case,

1. Capture sessions in Fiddler or Load Archive or Import Sessions into Fiddler. Or in standalone
version use the composer to create a session.

2. In the Sessions grid, select the sessions.

3. Right-click and in the context menu under StresStimulus Commands, click Create Test Case
to create a new test case or Add to Test Case to add selected sessions to the test case.

4.3 Post recording steps

4.3.1 Purging requests to unwanted

Some websites use third party web services (such as Google Analytics) that should be excluded
from the load test. Also, during recording, a web browser add
also should be excluded.

When Test Wizard reached the
will be displayed.

Note: Requests to the hosts added to the
automatically deleted.

Tip: You can also display the
Tree toolbar.

BUILDING TEST CASE - POST RECORDING STEPS

Post recording steps

Purging requests to unwanted hosts

Some websites use third party web services (such as Google Analytics) that should be excluded
from the load test. Also, during recording, a web browser add-on may generate unrelated traffic that

When Test Wizard reached the Targeted Hosts step, a list of hosts accessed during the recording

equests to the hosts added to the Excluded Hosts List before the recording, will be

You can also display the Test Case Hosts dialog by clicking Hosts

User Guide v1

POST RECORDING STEPS 56

Some websites use third party web services (such as Google Analytics) that should be excluded
on may generate unrelated traffic that

step, a list of hosts accessed during the recording

before the recording, will be

Hosts on the Test Case

User Guide v1

BUILDING TEST CASE - POST RECORDING STEPS 57

There are two ways to remove requests to the unwanted hosts.

 Manual purging. To delete sessions sent to hosts which do not require testing, from the test
case, in the Test Case Hosts list, check the boxes (a) on the left of the host names and click
Delete (b) on the toolbar.

Tip: Hosts that do not need to be tested often have a smaller number of sessions. To locate
such hosts, sort the Test Case Hosts list by the Session column (c) which displays the
number of captured sessions per host.

 Automatic purging. After every re-recording, sessions which target unwanted hosts should be
deleted again. To automate this process, StresStimulus maintains the Excluded Hosts List.
Requests to these hosts will be automatically deleted in subsequent recordings. To add the
selected hosts to the Excluded Hosts List, click the button (d) on the toolbar. To edit the

User Guide v1

BUILDING TEST CASE - POST RECORDING STEPS 58

Excluded Hosts List, click the button (e). You can access the Excluded Hosts List from
Stimulus Main Menu -> Host/Content-types -> Excluded Hosts. This list can have the full host
name or host name with wildcards.

4.3.2 Purging sessions with unwanted content types

Certain web resources create little impact on website performance and can be excluded from the
load test. You can filter out HTTP sessions with certain content types that you aren't interested in
testing.

When Test Wizard reaches the Content-Types step, a list of hosts used in during the recording will
be displayed.

Note: Sessions with the content types added to the Excluded Content Types List before
the recording will be automatically deleted.

Tip: You can also display the Content Types dialog by clicking Content Types on the Test
Case Tree toolbar.

User Guide v1

BUILDING TEST CASE - POST RECORDING STEPS 59

There are two ways to remove sessions with unwanted content types.

 Manual purging. To delete sessions from the test case with content types that do not require
testing, in the Content-type filter list, check the boxes (a) on the left of the content types
names and click Delete (b) on the toolbar.

 Automatic purging . After every re-recording, sessions with unwanted content types should be
deleted again. To automate this process, StresStimulus maintains the Excluded Content Type
List. Sessions with content types from this list will be automatically deleted in subsequent
recordings. To add the selected content types to the list click the button (c) on the toolbar. To
edit the Excluded Content Type List, click the button (d). You can access and edit the
Excluded Content Type List after the recording from Stimulus Main Menu -> Host/Content-types
-> Excluded Content-types. This list can have the content type or content type with wildcards.

4.3.3 Running Autocorrelation

After the test case is recorded, the test wizard will offer to create autocorrelation parameters. They
are necessary to avoid many test errors.

User Guide v1

BUILDING TEST CASE - POST RECORDING STEPS 60

To create autocorrelation parameters, StresStimulus will scan the test case without execution. Any
existing and deleted autocorrelation parameters will be re-created.

User Guide v1

BUILDING TEST CASE - POST RECORDING STEPS 61

Note: Sometimes scanning certain large request can be time-consuming. Click Skip to
interrupt scanning of the current request. The interruption might not be immediate.

Or click Abort to stop the autocorrelation operation. Stopping the scan might not be
immediate as well.

To rerun autocorrelation at anytime, click Test Wizard on the Workflow Tree toolbar.

4.3.4 Getting Familiar with the Test Case

4.3.4.1 Test Case Presentation

A test case can be presented as a Test Case Tree (a) or a Session Grid (b), as shown below.
Test Case Tree can be displayed on the left pane (a) or on the right pane (c)

User Guide v1

BUILDING TEST CASE - POST RECORDING STEPS 62

These two presentation forms are compared in the table below. The Test Case Tree displays a
hierarchical view of TOM with multiple object types. However, it only works with one selected object
at a time. The Session Grid only displays sessions, but allows to sort and select multiple sessions
to perform operations quicker.

Test Case Presentation Form Test case Tree Session Grid

View Hierarchical Flat

Displayed objects All objects or Sessions Sessions only

Sorting No Yes

Invoke operations Toolbar or Context menu Context menu

After the test case is recorded, the Test Case Tree appears in the object pane (a) on the left. The
following commands allow to change its presentation and location:

 To switch the Test Case view from the Tree to the Grid, click Show Recorded Test Case
Sessions In The Session Grid (d) on the Workflow Tree Toolbar. This will also dock the Test
Case Tree in the functional pane (c) on the right.

 To switch Test Case view back to the Tree, click the Tree View button (e).

 To move the tree to the right pane, click Dock to the right (f) on the Toolbar of the Test Case
Tree.

 To move the tree to the left pane, click Dock to the left (g) on the Toolbar of the Test Case
Tree.

User Guide v1

BUILDING TEST CASE - POST RECORDING STEPS 63

 To display a property grid (h) below the tree, click Show property grid on the bottom (i) or
right-click and select Show Properties in the context menu (j)

 To hide the property grid below the tree, click Hide property grid on the bottom (k) or right-
click and select Hide Properties in the context menu (l).

 The property grid (h) displays properties of the selected object. The first property for all objects
is Object Type (m)

 To display the tree and the property grid side-by-side, dock the tree on the left, then select
Build Test Case node (n) in the workflow tree.

 To leave more screen real estate to the right panel, click Collapse to the left (o) on the toolbar
to maximally shrink the left panel.

Tip: When selecting the request in the treeview on the right, the corresponding request in the
session grid on the left gets highlighted.

See Also:

UI Reference -> Session Grid

4.3.4.2 Test Case Object Hierarchy

Test Case Tree displays Test Case Objects Hierarchy. The number of supported hierarchical levels
is practically unrestricted. The following object types and their relationships are currently supported:

User Guide v1

BUILDING TEST CASE - POST RECORDING STEPS 64

1. Test case can have Pages, Requests,
Transactions and Loops.

2. Pages can have Requests Transactions
and Loops.

3. Transactions can have Pages, Requests,
Transactions, and Loops.

4. Loops can have Pages, Requests,
Transactions, and Loops.

5. Requests. Can have Validators, Extractors,
and Parameters.

6. Validator. Leaf objects.

7. Extractor. Leaf objects.

8. Parameter. Leaf objects.

Rich object hierarchy allows more precise
emulation of the most complex test scenarios
and also more granular performance metering.
For example, you can create a transaction
with any number of pages, loops and other
transactions or any parts of a loop, page or
transaction. After that, StresStimulus will
monitor this transaction and create its
performance subreport.

The following commands with objects are
supported:

 You can display as many or as little
details on the tree as you need. Every
additional click on the Expand (a) button
displays one more hierarchical level. To
display the entire tree, click the Expand
button several times. The Collapse (b)
button works the same way, but in reverse.

 You can re-position objects on the tree. To
move loops, transactions and pages on the
test case tree, select the object, right-click
and select Move Up (c) or Move Down in
the context context menu.

 To move requests, simply select, then drag

User Guide v1

BUILDING TEST CASE - POST RECORDING STEPS 65

and drop to a new position. From the
context menu you can also create or delete
new objects.

 If you made a mistake in creating, deleting
or re-positioning an object, and wish to
cancel the change click Undo (d) on the
toolbar or hit Ctr+Z.

 To cancel Undo, click Redo (e) or hit Ctr+Y.
Multiple sequential Undo and Redo are
supported.

You can change the properties of any selected
object in its property grid, displayed below the
object tree.

Info: The list of properties of these
objects is available in User Interface
Reference ->Test Case Tree.

4.3.4.3 Searching Test Case Tree

There are two type of searches available in
the test case tree: quick search and deep
search. Quick search can find information
displayed in the tree itself, such as object
name or request URL. Deep search searches
the content of the objects.

1. Search URL. In order to do a quick object
search, use the Search URLs textbox (a). As
you type, the first found tree node with the
given text will be highlighted (b). To search
next or previous, click the Next or Previous
buttons, or F3 or hit Shift+F3 respectively (c)

2. Search content. In order to do an
extensive content search of every session's
request and response, follow these steps:

 Click Find Session by Content or hit Ctrl+F
(d).

User Guide v1

BUILDING TEST CASE - POST RECORDING STEPS 66

 The search dialog will appear (e). Fill in the
following properties:

o Find What (f): The text to search
for.

o Search Scope (g): The session
parts to search. The options are:

 Request (only)

 Response (only)

 Request and Response

o Examine (h): Within the search
scope, what part to examine. The
options are:

 Headers (only)

 Bodies (only)

 Headers and Bodies

 You can optionally use the supplemental
check boxes (i):

o Match whole word: The search text
will be matched as a whole word.

o Match case: The search will be
case insensitive.

o Use wildcards: The search text
contains wildcards (such as ? to
match any one character and * to
match any characters)

o Use regular expressions: The
search text is a regular expression.

o Search Variations. Search for
encoded/decoded variations of the
string (selected by default).

 Click Find All (j) to begin the search. All the
sessions that meet the search criteria will
be highlighted in yellow (k).

 Double click on the highlighted session to

User Guide v1

BUILDING TEST CASE - POST RECORDING STEPS 67

see the search criteria highlighted in the
Session Inspector (l).

 Click the Clear search button (m) to clear
the search and un-highlight the sessions.

4.3.4.4 Displaying AutoCorrelation Details

Every autocorrelation parameter consists of an autocorrelation extractor (f) and a parameter (g). By
default, the extractor is hidden and the parameter is marked as {{Autocorrelated}}

To display the autocorrelation details, click Show autocorrelation parameter details on the test
case tree toolbar. The extractors will un-hide and their names will be displayed next to the
corresponding parameters. To switch back to the default view, click Hide autocorrelation
parameter details.

Note: Autocorrelated extractors and parameters have names that begin with two
underscores.

4.3.4.5 Pages and HTTP Sessions

After recording the test case, the Test Case Tree displays the following objects:

User Guide v1

BUILDING TEST CASE - POST RECORDING STEPS 68

 Pages. StresStimulus automatically generates page names based on their HTML title Tag. You
can change page names during recording in the IE recorder. You can also rename the page by
right-clicking the page in the test case tree.

 HTTP sessions. Each session consists of a pair of request and response messages.

o To view the recorded requests and responses or to make small modifications without re-
recording the entire test case, use the session inspector. Double-click on the session to
display the session inspector. For more details, see User Interface Reference -
> Session Inspector.

You may also need to add, delete or reposition sessions. For more details, see Adding, Deleting
and Changing Sessions

 Autocorrelation rules. Some of the sessions may have automatically created Autocorrelation
rules which should not be changed.

More objects are created in the subsequent configuration steps.

User Guide v1

BUILDING TEST CASE - POST RECORDING STEPS 69

See also:

For Page and Session Context Menu Commands, see User Interface Reference -> Toolbar

For Test Case Tree's toolbar commands, see and User Interface Reference -> Toolbar

4.3.4.6 Adding, Deleting and Changing Sessions

Sometimes after a test case is recorded, you
need to change some sessions. This may be
necessary because of changes in the web
application or a requirement to modify the set of
recorded sessions. The following types of
session changes are available:Re-positioning

To re-position the selected in the Test Case
Tree request or page, drag and drop it into a
new position. You can also move them up or
down by pressing Ctrl + Up/Down arrow keys.

Adding

To add new sessions from the session grid to
the Test Case Tree.

1. Select Build Test Case node to display the
Test Case Tree on the right.

2. Display new sessions in the session grid on
the left in one of the following ways:

o Issue requests from a web browser or
other web client and capture them in
Fiddler.

o Open a previously saved .saz file with
HTTP sessions.

3. Select the sessions you want to add to the
test case then right click > StresStimulus
Commands > Add to Test Case in order to
add the sessions to the end of the test case.

4. You can re-position the added sessions to
the desired positions as described above.

User Guide v1

BUILDING TEST CASE - POST RECORDING STEPS 70

Deleting

From the Test Case Tree: select a session,
you need to delete or select multiple sessions
by clicking while holding Ctrl or Shift key. After
that click Delete in the toolbar (a), right-click and
select click Delete or hit (Del)

From the Session Grid: click Show recorded
test case sessions in the session grid (c),
select sessions to be deleted, right-click and in
StresStimulus Commands , select Remove
from Test Case or hit (Ctrl+Del).

Searching and Deleting Multiple Sessions

You can delete multiple sessions matching
certain criteria. This is a two-step process:

1. Search for the session matching the criteria,
as described in Searching Test Case Tree.
All session matching the criteria will be
highlighted (f)

2. Click Delete the found highlighted
sessions (g) on the toolbar.

Editing

To edit a session in the Test Case Tree, double
click the session (h), and in the appeared
new Tab (i) session inspector, check
for editing (j). After that you can make
changes in the session request (k) and
response (l). When finished, click

4.3.4.7 Creating Sessions Using Request Composer

Most test cases are created as a resu
several requests, or entire test cases can't be recorded and must be created manually. This is
especially helpful for performance testing of a restful API. For these cases you can use the Reques
Composer.

To open the Request Composer, right click on the Sessions Grid and select the Request Composer
option.

BUILDING TEST CASE - POST RECORDING STEPS

To edit a session in the Test Case Tree, double-
click the session (h), and in the appeared in a
new Tab (i) session inspector, check Unlock

(j). After that you can make
changes in the session request (k) and
response (l). When finished, click Save (m).

Creating Sessions Using Request Composer

Most test cases are created as a result of recording a test case. However, in some instances, one,
several requests, or entire test cases can't be recorded and must be created manually. This is
especially helpful for performance testing of a restful API. For these cases you can use the Reques

To open the Request Composer, right click on the Sessions Grid and select the Request Composer

User Guide v1

POST RECORDING STEPS 71

lt of recording a test case. However, in some instances, one,
several requests, or entire test cases can't be recorded and must be created manually. This is
especially helpful for performance testing of a restful API. For these cases you can use the Request

To open the Request Composer, right click on the Sessions Grid and select the Request Composer

The Request Composer should open in a new tab.

BUILDING TEST CASE - POST RECORDING STEPS

The Request Composer should open in a new tab.

User Guide v1

POST RECORDING STEPS 72

User Guide v1

BUILDING TEST CASE - POST RECORDING STEPS 73

To create a new HTTP(S) request, you can either complete the builder form or click the Raw tab
and enter the request content manually.

Then press Send to issue the request and add a session to the bottom of the session grid. After
that you can add it to the test case as described in Adding section here.

Builder Options

1. Select the request method.

2. Type the absolute request url including the query string.

3. Select the HTTP Version number (1.1 is the default).

4. If you want to add request additional request headers like User-Agent or Accept. Do not add the
Content-Length header as it will be added automatically.

5. If you selected the POST or PUT method then you can add a request body.

a. If you have a webform body then you can add name/value names.

b. Check the Url-Encode names/values checkbox to url-encode the names and values and
adds the Content-Type: application/x-www-form-urlencoded header.

c. If you have any other body then select the Raw body radio button and type the request
body.

Note

Request Builder is only available in the Standalone version of StresStimulus. If you are using
StresStimulus from Fiddler-Addon, use Fiddler's Composer feature to create requests.

4.3.5 Page Structure

When you start recording a test case from a web browser or mobile device, StresStimulus
automatically groups the recorded requests into pages (a) using a heuristic algorithm. Pages are
essential elements of the test, and StresStimulus collects and reports page performance metrics in
addition to request performance metrics. In some cases, requests may not be associated with any
page. These requests will be left ungrouped.

User Guide v1

BUILDING TEST CASE - POST RECORDING STEPS 74

Note: Requests issued after the web page is already displayed do not affect the page
download time. Such requests are sent with significant delay after the response and are not
assigned to any page. Examples of unassigned requests are AJAX requests triggered by a
mouse-over action or a request trigger by a client's JavaScript (i.e.JQuery timer event).
StresStimulus uses a heuristic page breakdown algorithm to determine which requests are
part of the page and which are unassigned requests.

You can disable automatic page breakdown. To do so, in the Test Wizard -> Record Test Case
step, un-checked the Group requests into pages box. This can be helpful when, instead of
tracking the performance of pages, you prefer to track performance of transactions which can be
used to group requests manually. Disabling pages is also helpful when testing Web services.

User Guide v1

BUILDING TEST CASE - POST RECORDING STEPS 75

4.3.5.1 Request Concurrency

Modern browsers issue requests in parallel to download webpages faster. StresStimulus simulates
concurrent requests by mimicking the browser’s behavior based on the following test factors:

 Page breakdown information.

 Types of simulated browsers in the mix.

 Types of simulated network bandwidth in the mix.

 Server responses.

It does not use the information about parallel connections collected during the recording because
this information is not fully relevant to the emulated test conditions. Emulated browser types can be
different from the browser type used for recording. Also, the server load during test run is typically
higher than the one during the recording.

The following behavior is emulated for every page and for every VU independently:

1. Issue primary request and wait for the response. During this time all dependent requests are
blocked.
2. Receive the primary response and handle dependent requests, which can be issued in parallel or
sequentially.

1.

User Guide v1

BUILDING TEST CASE - POST RECORDING STEPS 76

a. Parallel dependent requests. Dependent requests, representing webpage resources,
such as images or style sheets, are typically sent in parallel, using multiple connections.
The number of connections depends on the maximum number of available concurrent
connections supported by the emulated browser. Each browser type has two limits: Max
connections per hosts and Max connections per proxy. Both limits are enforced, so the
number of connections per any single hosts and the number of total connections are
independently limited. All other dependent requests, if any, are blocked (queued). As
responses are being received, some of the queued dependent requests are being
issued without violating the browser's connection limit constrain. Additional blocking
rules are imposed to prevent issuing subsequent dependent requests until certain
critical responses are received. These rules follow standard browsers specifications.

1.

a. Sequential dependent requests. Some dependent requests on a page must be
issued sequentially, according to the page logic. For example, a video player on the
page request subsequent video fragment after receiving and processing previous
fragments. Some MIME types (e.g. Text/HTML) are always requested sequentially.
Depending on the tested application, you can add additional MIME types whose
requests must be issued only after receiving all previous responses. This will prevent
dependent requests of these types from being requested in parallel with other
dependent requests on a page. To do so, in Configure Test --> Other Options, in the
property MIME Types requested sequentially, click the drop-down and enter additional
MIME types. Separate multiple entries by ",". For example, enter "image,video", as
shown below, to request all images and videos sequentially; or enter "video/mp4" to
Request MP4 video sequentially. After modifying this property, launch test wizard and
rerun autocorellation.

Info: Sent and received traffic cannot exceed emulated network type bandwidth limits. To
achieve this the traffic can be appropriately slowed down.

3. After the last dependent response was received, the current page is finished processing.

4. Optional think time delay is injected.

5. The VU is ready for processing the next page.

You can change the default request concurrency by changing the page breakdown, as described in
the next section.

User Guide v1

BUILDING TEST CASE - POST RECORDING STEPS 77

4.3.5.2 Managing Page Breakdown

The initial page breakdown can be changed manually. This can be necessary for a more accurate
grouping of requests related to a webpage.

Editing an Existing Page

To edit a page after recording, open its context menu by right mouse clicking on it. Then select Edit
Page.

A pop-up will appear which will allow you to edit the page title, the request with which the page
begins loading, and the request with which the page stops loading.

After you finish saving all changes, click Save.

User Guide v1

BUILDING TEST CASE - POST RECORDING STEPS 78

Creating a New Page

If your test case has requests unassigned to any pages, you can group them in a new page.

To create a new page, right mouse click on a request to open its context menu.

User Guide v1

BUILDING TEST CASE - POST RECORDING STEPS 79

Then specify a page title, the request with which the page begins loading, and the request with
which the page stops loading.

After you finish saving all changes, click Save.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 80

4.4 Parameterizing dynamic tests

When recorded requests are replayed during a test run, some of them need to be modified before
issuing. The process of replacing fixed recorded values in the requests with dynamic values is
called parameterization. Most modern websites, except those that merely service static pages and
images, are dynamic. Parameterization is an important part of performance testing such websites.
The dynamic values can be derived from the following sources:

1. Calculated on-the-fly based on intrinsic rules built-in a load testing tool.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 81

Example: cookie correlation and autocorrelation (see Cookie Correlation and Autocorrelation). This
type of parameterization, called correlation, works automatically. Its effectiveness depends on the
quality of the load testing tool. Some tools can miss necessary correlation rules, and as a result a
test will generate errors or more work is required to manually create missing parameters as noted
in the next item. StresStimulus supports autocorrelation in all major web platforms.

2. Calculated on-the-fly based on rules created by a test analyst.

Example: extracting server-based data from responses (see the paragraph Parameterization with
Server Data). Discovering such rules can be an elaborate process that depends on the quality of
the load testing tool. StresStimulus has various features to simplify manual parameterization, such
as Parameter Finder and Auto-Configurator.

3. Fetched from external datasets or generated in real-time.

Example: parameterization with data sets and data generators (see the paragraph
Parameterization with User Data). StresStimulus has data generators for building all major data
types.

Evidence that some parameters are missing

 Test Case Verify command returns errors or warnings.

 After the test run is complete, the error detail report is not empty.

 It is expected that recorded user’s actions should modify backed data (e.g. database
information, log file entries, file updates, communication messages) but after the test run
such changes did not take place.

4.4.1 Types of Dynamic Requests

4.4.1.1 Cookie Correlation

Example. A public website uses a session cookie to maintain state integrity for every visitor. The
server issues a unique cookie to every user on the first visit. A cookie is stored in the user's
browser and is included in requests on subsequent visits. If cookie handling is disabled in the
browser, the website might not work properly.

Load testing requirements. To avoid request failures, a recorded cookie must be replaced by a
unique value, generated by the server for every VU. Cookie persistence should be provided for the
duration of the test for every VU. StresStimulus handles cookie correlation automatically,
regardless of the web server platform to ensure that every VU adheres to its client session. For

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 82

example, it automatically handles the JSESSIONID cookie in Java applications and ASP.
NET_SessionId cookie in ASP.net applications.

4.4.1.2 Autocorrelation

Example. A stateless web server sends the client a dynamic value representing the application
state. This value is included in the response body as a hidden web form field. On the subsequent
request, the server expects to receive the same value to maintain application integrity from this
client. The application state can change from request to request.

Load testing requirements. During load test execution, reissuing requests with recorded
application states can result in server errors. To avoid these errors, every request from a virtual
user must include the dynamic application state that the server provided. To achieve that, the
dynamic value must be identified, extracted from the responses and then used to replace the
recorded value in the subsequent requests. This process is called correlation. StresStimulus
handles correlation automatically for all web application platforms. For example, it automatically
correlates __VIEWSTATE, and __REQUESTDIGEST hidden web form fields for ASP.NET and
SharePoint applications, respectively. Autocorrelation supports various types of web sessions such
as HTML and AJAX pages. During test execution, autocorrelation rules automatically modify
requests to make VUs compatible with dynamic web applications.

Note: Internally, each autocorrelation rule is implemented as a hidden unnamed response
extractor and a parameter that uses the extractor to substitute a recorded value in the
subsequent request. The extractor is hidden, but the parameter appears on the Test Case
Tree. Though it is not recommended, you can delete autocorrelation rules.

4.4.1.3 Parameterization with Server Data

Example 1. A secure Web application requires users to login. The web server creates an
authenticated session for every user, generates a unique token, and sends it back to the browser in
the response body. On every subsequent request, the browser sends the token to identify the user
and its session.

Load testing requirements. Reissuing requests with the recorded session ID during the load test
execution will result in server errors. To avoid these errors, every request from a virtual user must
include a dynamic token that this virtual user received from the server. To achieve that, the
dynamic tokens must be identified, extracted from the responses and used to replace the recorded
values in the subsequent requests.

Example 2. A web application maintains application-specific dynamic values that are generated on
the server and are included in some of the requests. Parameterizing such requests is more difficult
than in the previous example.

Several factors listed below complicate finding the dynamic values and the dynamic requests:

 A field name in the response and request are different.

 HTTP messages are not in the name/ value format and the dynamic value is "buried" inside
JSON, XML, and proprietary or even binary data stream.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 83

 A value is received in one part of the response (e.g. the header) and submitted in another part
of the request (e.g. the query string).

 A value is received from the server, stored in the browser, and after a substantial delay during
which many unrelated HTTP roundtrips are performed, is submitted back to the server.

Load testing requirements. The process of finding and matching dynamic fields in the recorded
requests to responses and creating parameterization rules by injecting proper dynamic values in
the proper request, is called parameterization. StresStimulus supports manual and automatic
parameterization:

 Manual parameterization: the Extractors and Parameters are created manually.

 Automatic parameterization. Three tools are used to automatically create Extractors and
Parameters: Parameter Finder, Parameter Creator and Auto-Configurator.

4.4.1.4 Parameterization with User Data

Example. A test scenario includes a search page which submits a user's search text. When
running a load test, the server receives the same recorded search text for all VUs. Due to server
caching, the server's response will be substantially accelerated because a search result will be
retrieved from memory without accessing the database. As a result, performance testing will be
inaccurate.

Load testing requirements. For realistic performance testing, multiple sets of user data should be
used during the replay to properly emulate multiuser data entry. Such dynamic sets of data can be
either predefined or dynamically created on-the-fly.

 To maintain predefined business data StresStimulus uses Datasets. Any external tabular data
stored in .csv format can be added to a test. A dataset field can be bound to the appropriate
request parameter.

 To generate data in real-time during test execution, StresStimulus uses Data Generators and
Functions. All major data types can be generated.

StresStimulus supports all listed types of dynamic requests and provides increased performance
testing accuracy as well as saves time on test configuration.

4.4.2 Manual Parameterization

This section describes manual test parameterization and the following section describes automatic
test parameterization. It is recommended to start test configuration with automatic parameterization,
as it likely will configure all or most of the required parameters while saving time. Use the manual
parameterization only if the automatic parameterization missed some necessary parameters or
errors are displayed while verifying the test. The manual parameterization is described first in this
document for clarity.

Manual parameterization includes two main steps:

1. Creating one or several variables that are sources of dynamic data.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 84

2. Create a parameter that uses the variables to substitute recorded value with dynamic data.

4.4.2.1 Variables

Variables are used to reference various types of dynamic data for the purpose of parameterizing
simulated requests. Each variable is evaluated during the test run before issuing a request where
the variable is used for parameterization.

StresStimulus supports four types of variables provided below:

Variable Type Data Source Use in Parameters

Extractor Server-Based {{extractor_name}}

Dataset Predefined {{dataset.field$databinding_method}}

Data Generator Generated on-the-fly {{data_generator_name}}

Function Generated on-the-fly {{function_name}}

External Provided in your custom code {{variable_name}}

Each variable is stored in the test script as a software object of a specific type that has appropriate
set of properties. When you create a variable in StresStimulus UI, an appropriate property grid will
be presented. After the variable is created, almost all of its property can be changed through the
same property grid. You can also edit variables' properties using the script editor.

When creating a variable, you do not need to worry about specifying its data type. When a variable
is populated with external data, StresStimulus automatically converts external data into the text
readable format if necessary, using the appropriate decoding method. For example, if a variable is
populated with data extracted from a WCF binary server response, then binary data will be
automatically converted to XML before populating the variable.

Extractors

StresStimulus uses extractors to take dynamic values from test run server responses, and re-insert
them into subsequent requests using parameters. An Extractor is a variable that derives the
dynamic values from a server response. It is also a rule of retrieving a value by parsing a response.

Extractors support various response encoding, including:

 Text based formats, such as HTML forms, XML, JSON,

 Binary formats, such as WCF or AMF

The process of creating an extractor includes the following steps:

1. Determine a dynamic value that should be extracted from a particular response. This value will
be used to form a parameter that will replace the recorded value in one of the subsequent requests.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 85

2. Determine a rule that extracts the value of the response.

3. Depending on the rule, select a type of the extractor to use. The five types of supported
extractors are provided in the table below. Some of them are available only for specific types of
responses.

Extractor
Type

Description Restrictions

Text Delimited Extracts a value that occurs in the response between two
specified strings: Starting string (Text before) and ending
strings (Text after).

Regular
Expression

Extracts a value that is found in the response using a
regular expression search.

Header Extracts a value of a specific response header.

Form Field Extracts a value of a specific web form field. Available only in web
forms

XPath Query Extracts a value that is found in an XML response body by
an XPath query. This includes WCF binary responses.

Available only in
XML responses

JPath Query Extracts a value that is found in an JSON response body
by an JPath query.

Available only in
JSON responses

1. Test that the Extractor returns the expected value from the recorded response.

2. Make sure that this rule is generic enough and works on other instances of the same response
generated by a different virtual user on a different iteration.

3. Give the Extractor a meaningful name and save it.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 86

How to Create an Extractor

Simple Extractor

A simple extractor selects a string or a value
from a response. To create it:

1. Select the request or an existing extractor in
the test case tree,

2. Right click and choose Create Response
Extractor.

3. The extractor control will appear. It displays
four areas:

1.

a. Extractor type selector

b. Property grid

c. Toolbar

d. Response window, displaying
response content

Note: Most often, response content is text
based, and it is displayed in the response
window as a clear text. Compressed
and/or encrypted text based responses
are automatically decompressed
/decrypted and displayed as clear text as
well. WCF binary responses are decoded
and displayed as XML.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 87

3. Select the extractor type.

5. Complete an optional description and fill out
other required properties defining a text search
rule that depends on the extractor type.

4. Give it a unique and meaningful name. It will
appear in the Variable Picker when you create
parameters.

6. Verify the Extractor.

7. Click Save & Close. To create more
extractors, click Save & New.

Once the extractor is created, you can edit it. To
do so, select the extractor node on the
Workflow Tree (e), right-click the extractor you
wish to edit (f) and then in the context menu
select Edit (g) or double-click on the extractor.
You can also click edit (h) on the toolbar
instead. The same extractor control will appear.
Change the extractor's properties, verify it and
save changes.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 88

Extractor from Extractor

Sometimes it is necessary to create an extractor
that selects a string or a value from another
extractor. An example when this would be
useful is when response body contains XML or
JSON content intermingled with other content.
The easiest way to extract a value from XML or
JSON is by creating an XPath or JPath
extractor, respectively. If you create a simple
extractor from the body it will fail while parsing
parts of the body which are not XML or JSON.

You can resolve this issue in two steps:

1. Create a simple text delimiter extractor which
selects the entire XML or JSON block from the
body, as described above.

2. Create an XML or JSON extractor from the
simple extractor. To do so, right-click on the
existing extractor (i) and then in the context
menu, select Create Response Extractor (j).
The same extractor control will appear. The
response window (d) will display the content of
the first simple extractor instead of the
response content. Continue configuring the
extractor as you would the simple extractor.

Note: Extractors can be created from
other extractors in unlimited levels.
Multiple related extractors are evaluated
sequentially at run-time starting from the
top simple extractor down the chain to the
last extractor.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 89

Text Delimited Extractor

This is the most common extractor type. Its
value is defined by extracting a string that
occurs between two delimiters Text Before
and Text After in the response.Creating Text
Delimited Extractor

1. In the response window, find the dynamic
value you want to extract, such as a token.
Use the find box on the toolbar, if necessary.

2. Select preceding delimiter, and click Set
the selected text as Text Before on the
toolbar.

3. Select the succeeding delimiter and click
Set the selected text as Text After.

Tip: When select delimiters consider
these points:

 Longer delimiters impact performance.

 Shorter delimiters increase chances
that more than one pair of delimiters will
be found (see the next step).

4. Click Verify Extractor on the toolbar and the
calculated value will appear in the Extractor
Check window. Compared to the expected
value, it can be different in the following
cases:

1. Incorrect delimiters. In this case, correct the
delimiters and try again.

2. More than one pair of delimiters was found
and therefore the Occurrence property must
be properly set. Occurrence property is
described in the next section.

5. Turn on HTML Decoding and URL
Decoding properties if either encoding was
used on the server to generate the response.
Example of HTML Decoding is converting

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 90

">" to ">". Example of URL Decoding is
converting "%3F" to "?".

6. Turn on Escaped Hex Decoding to apply
escaped hex decoding to the Extractor value.
An example of decoding: '\x23' to '#'. This is
used in instances when extracting values from
JSON responses.

Shortcut for creating Text Delimited
Extractor

1.

a. In the response window, find and
highlight the dynamic value you
want to extract.

b. Right click and select Create Text
Delimited or click Create Text
Delimited on the toolbar.

c. Text Before and Text After
properties will be populated
automatically.

d. Click Verify Extractor to confirm
that the extractor is created
correctly.

Regular Expression Extractor

Regular Expression extractors should be used when you can't define an extractor using text
delimiters. For example, you need to extract a GUID, but you did not know where it will appear in
the response and its value.

The difference between the regular expression extractors and text delimited extractors is that
instead of delimiters, you need to define the Regular Expression property (a). For example, if you
need to extract a value in a name/value pair combination and the name is some text followed by a
number, then you can define a regular expression as follows:

\w+\d+="(?<value>.+)"

The regular expression for GUID is: (?<val>[A-F0-9]{8}(?:-[A-F0-9]{4}){3}-[A-F0-9]{12})

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 91

If the regular expressions find more than one value, the Occurrence property (b) must be properly
set. The search starts from the beginning of the response. By default, the first occurrence of the
value will be used for the extractor. In order to use the second matching value, the Occurrence
property should be changed from 1 to 2. To do so:

1. Click Verify Extractor on the toolbar and compare the value in the Extractor Check window with
the expected value.

2. If an incorrect value is displayed, find the correct occurrence of the matching value by clicking
Next/Previous Occurrence until you find the correct value.

3. Click Set The Occurrence to properly adjust the Occurrence property.

For instruction on how to set other properties of the regular expression extractors, see the previous
section Text Delimited Extractors.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 92

For the regular expressions reference, see this source.

Header, Form Field and XPath/JPath Extractor

Header extractors (a) return a response header's value. To define the Header Extractor, select the
header name from the Header (a) drop-down.

For instructions on how to set other properties of the Header extractor, see the section Text
Delimited Extractors.

If a response is a web form, then you can use Form Field (b) extractors. They return a web form
field value, for example a value of any html textbox or hidden field. To define a Form Field
Extractor, select the field name from the Form Field (c) drop-down.

If a response is XML, then you can use an XPath Extractor. The difference between XPath
extractors and text delimited extractors is that instead of delimiters, you need to define an XPath
query.

The XPath tutorial can be found at this location.

If a response is JSON, then you can use a JPath Extractor (d). The difference between JPath
extractors and text delimited extractors is that instead of delimiters, you need to define an JPath
query (e). You can also use the JPath creator feature by selecting the value you want to extract and
clicking the Create JPath button (f) or by right clicking and selecting Create JPath Query (g) in the
context menu. StresStimulus will automatically create a JPath extractor that will extract the selected
value.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 93

The JPath description can be found at this location.

Emulating Clicks on Random Links

Sometimes a test scenario cannot be defined precisely because different users choose different
website navigation routes. For example, a content management system (CMS) runs a news
website. Pages with news articles are created daily, and the corresponding links are updated at the

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 94

same time. The goal of a load test is to emulate users visiting different pages depending on their
personal interests.

In order to emulate a click on a random link, create an extractor with a generic search rule for
finding a hyperlink.

Examples: This is an example of a regular expression finding a hyperlink:
<a\s+href="(?<url>.+?)".*>.*?

This is another example of a regular expression finding a relative hyperlink :
<a\s+href="(?<url>[^:]+?)".*>.*?

Then randomize the extractor's Occurrence property so different VUs will extract different URLs. To
do so, set the Occurrence Type property to Random, and define the range of links by setting the
Min Occurrence and Max Occurrence properties. And finally, use this extractor to parameterize the
subsequent request header's {PATH} property.

Since all links are determined dynamically, the same test can be used without re-recording after the
website was updated and links were changed. This approach allows to create a large number of
random and unpredictable traversing routes that are necessary to test. Combining this approach
with random think times allows to realistically emulate the impact of a user-base on server
performance and to test a very large number of real-life situations.

Extractor Tree

Extractors (1) are created from responses (2). They are displayed in sequential order.

Each extractor is used to create one or several parameters in subsequent requests. Parameters
are displayed as subordinate elements (3) of this extractor. The request number (4) where the
parameter is created precedes the parameter.

The property grid (5) displays the properties of the selected extractor.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 95

The list of extractor commands and properties is provided here.

Matching Extractors to Parameters

The extractor tree automatically matches parameters to extractors. Sometimes it is necessary to
solve the opposite task, matching an extractor to a parameter.

To do so, on the Test Case Tree, select a parameter, right click, and chose Show on extractor
tree. StresStimulus will highlight the matching extractor on the Extractor Tree.

BUILDING TEST CASE

Disabling and Hiding Extractors

Sometimes it may be necessary to check if extractor created manually or by autocorrelation is
required. To do so, you can temporary disable an extractor by changing its property
"Yes".

By default all extractors are enabled, so the default value for this property is "No".

Changing the IsDisabled parameter to "Yes" will automatically disable all the de
parameters. When you re-enable the extractor, all related parameters are automatically re

BUILDING TEST CASE - PARAMETERIZING DYNAM

Disabling and Hiding Extractors

Sometimes it may be necessary to check if extractor created manually or by autocorrelation is
so, you can temporary disable an extractor by changing its property

By default all extractors are enabled, so the default value for this property is "No".

Changing the IsDisabled parameter to "Yes" will automatically disable all the de
enable the extractor, all related parameters are automatically re

User Guide v1

PARAMETERIZING DYNAMIC TESTS 96

Sometimes it may be necessary to check if extractor created manually or by autocorrelation is
so, you can temporary disable an extractor by changing its property IsDisabled to

By default all extractors are enabled, so the default value for this property is "No".

Changing the IsDisabled parameter to "Yes" will automatically disable all the dependent
enable the extractor, all related parameters are automatically re-enabled.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 97

Datasets

Datasets store predefined sets of data that are used to feed request during the test execution. The
data is stored in tabular form with multiple rows and columns. A test can have multiple datasets.

The dataset is also a variable that dynamically selects a single value from a specific column and
replaces a recorded value in the request parameter.

The row from which the value is retrieved is determined dynamically based on a specified
databinding rule. For example, the value can be selected from a random or a subsequent row.

Creating Datasets

After a dataset is created it is stored in the test folds as a csv file. The following methods of creating
data sets are supported:

 Creating a dataset structure and entering data in StresStimulus.

 Creating a structure of an empty dataset in StresStimulus, copy tabular data from any
external data sources, such as Excel, and paste it to the dataset grid in StresStimulus.

 Creating a structure of an empty dataset in StresStimulus and managing the .csv file outside
StresStimulus UI. For example, the entire .csv file can be re-generated using external data
sources before running a new test.

 Importing an external data source as a new dataset.

Once a data set is created, it can be maintained in StresStimulus. Data can be deleted or modified
manually, and additional data can be entered.

How to create and edit a dataset

1. Click the create a new Dataset button and the Add/Edit Dataset dialog will popup,

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 98

2. Set the dataset name and add the necessary fields. The dataset name will appear in the Variable
Picker when you create parameters. Click OK when done. This will create an empty Dataset.

Note: For better readability, using a space and many special characters as a part of the data set
and field names is permitted. Exceptions are "." and "$"

3. After that, you can type or paste data into the grid.

4. To create a dataset with a user's credentials for form authentication, click Authentication Dataset.

Tip: For Basic, Windows Integrated (e.g. NTLM) or other Kerberos authentication use
Authentication section on the Test Workflow Tree.

5. To edit data, select a dataset from the drop-down and edit data in the grid

6. To rename a dataset or edit its structure, click Edit. To add a field, enter the field name and click
Add Field. Double-click the field to rename it. To reposition, rename or delete a selected field, use
the Up, Down, Rename or Remove buttons.

7. Other available operations are Export Data and Delete.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 99

Importing Datasets

To create a data set with external data, click the Import button (a). In the Import Dataset window,
select the data source on the left (b). Either Excel, Text file, or SQL Server query. Fill out the
corresponding form to import a dataset. Click the Preview button (c) to see a preview of the
dataset. When you are ready to import the dataset, give it a unique name and click the Import
button (d).

Excel:

1. Browse for or provide a path to the Excel file.

2. Click Refresh button to refresh the worksheets in the Excel workbook.

3. Check the First line has column headings, if the first row contains column headings.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 100

Text file

1. Browse for or provide a path to the text file.

2. Type the delimiter character that will separate the columns. For instance, if the text file is a .csv
then the ',' should be the delimiter.

3. Check the First line has column headings, if the first row contains column headings.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 101

Special Characters

 Special characters can be included into the dataset text file using URL encoding. To insert a
character with hexadecimal code XX, add the %XX sequence to the file. In rare cases, when
%XX should be interpreted as a 3-character string, URL-encode the percent character, so
the string will look like %25XX

 The coma character is used as a field separator in the text file. In order to use a coma within
values, surround it with quotes (ex. ",")

SQL Server

1. Fill out the SQL Server form. Provide the Server Name, Database Name, Credentials, and a
Select Query.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 102

Dataset Ranges

It is sometimes necessary to use unique records from a dataset for every test run, for example in
situations where each dataset record contains data to be inserted into the database and the same
data can't be inserted twice. One way to accomplish this is before running a subsequent test, delete
all the records from the dataset and replace them with new records. Another way is to limit the
dataset ranges and only use a subset of records for the test.

To enable dataset ranges do the following:

1. In the dataset set the Limit Dataset property to Yes.

2. Set the starting record to use in the current test.

3. Set the record count to set the number of records to use from the starting record.

4. Set the auto-advance records to Yes to automatically advance the starting record (by record
count amount) after each test run. If the starting record value gets larger than the actual number
of records, the starting record count will reset to 1.

BUILDING TEST CASE

Using Datasets

Datasets are used to feed request during the test execution. A dataset variable is associated with a
specific datasets column. The row from which the value is
specified databinding rule.

The dataset variable is referred by as
surrounded by the brackets. For example:
Picker is used to create a parameter, the properly formatted dataset name reference is inserted
automatically.

BUILDING TEST CASE - PARAMETERIZING DYNAM

Datasets are used to feed request during the test execution. A dataset variable is associated with a
specific datasets column. The row from which the value is retrieved is determined based on a

The dataset variable is referred by as [dataset name].[field name]$[data bind method]
surrounded by the brackets. For example: {{Users.username$VU_Bound}}
Picker is used to create a parameter, the properly formatted dataset name reference is inserted

User Guide v1

PARAMETERIZING DYNAMIC TESTS 103

Datasets are used to feed request during the test execution. A dataset variable is associated with a
retrieved is determined based on a

[dataset name].[field name]$[data bind method]
{{Users.username$VU_Bound}} . When the Variable

Picker is used to create a parameter, the properly formatted dataset name reference is inserted

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 104

StresStimulus supports 7 databinding methods:

1. Request-Bound (Req-Bound)

2. VU-Bound (VU-Bound)

3. Iteration-Bound (Iter-Bound)

4. Iteration-Request-Bound (Iter-Req-Bound)

5. VU-Iteration (VU-Iter-Bound)

6. Parameter-Bound (Param-Bound)

7. Random (Random)

The dataset value is fetched just before issuing the requests. It replaces a recorded value in the
request parameter.

For more information about databinding methods, see Databinding.

Info:

Sometimes it is necessary to parameterize dynamic file upload. The recorded request
typically will be a multipart post request where one of the fields has a value containing the file
content. For example, the request will look like:

-----------------------------3e04d523481038

Content-Disposition: form-data; name="submittedfile"; filename="SELECTED.pdf"

Content-Type: application/pdf

%PDF-1.7

%����

7052 0 obj

The field "submittedfile" here represents the recoded content of the file. In the course of load
testing you want to replace this content with dynamically selected files with the content of files
locally available to the load testing machine. To do so, create a dataset with a field for storing
the full paths of such files. Then parameterize the multipart request by replacing the value of
the field with the recoded file content (in this case "submittedfile" field) with the dataset.

StresStimulus will replace recorded file content with the dynamic content during replay.

Note: if you are using this feature on a distributed test with one or more agents, then all files
must exist on all the agents in the same location.

BUILDING TEST CASE

Tip: One dataset can be used in several test cases.

Data Generators

A data generator (DG) returns a generated on
same name, which is used to parameterize requests. Depending on the DG type, the value can
random or systematic. DG can be used for creating streams of emulated business data of different
types which can be included into the HTTP load stream. It allows to more realistically mimic
physical users interacting with web application by entering re
avoid creating large test datasets manually.

A data generator type determines what random value will be returned: Integer, Double, Date/Time,
GUID or Text.

The following DG types are supported

 Integer - Returns an intege

 Set Type to AutoIncrement to generate sequential integers starting from the Min Value. After
the Max Value is reached, the next integer is the Min Value. If uniqueness is required, make
sure that Max Value will not

 Set Type to Random to generate random integers between the Min Value and Max Value. The
uniqueness of the random numbers is not guaranteed.

 Double - Returns a double precision point number between the Min Value and Max Value.

 Datetime - Returns a date time object between the Min Value and Max Value.

 Guid - Returns a new Guid.

 Text - Returns a set of characters with a length between Min Length and Max Length.

How to create a Data Generator

1. Select the data generators node on the Test

2. Click Create New Data Generator to bring up the generator dialog.

3. Select DG type that will return the appropriate datatype.

4. Set When To Evaluate property to

BUILDING TEST CASE - PARAMETERIZING DYNAM

One dataset can be used in several test cases.

A data generator (DG) returns a generated on-the-fly random value assigned to a variable with the
same name, which is used to parameterize requests. Depending on the DG type, the value can
random or systematic. DG can be used for creating streams of emulated business data of different
types which can be included into the HTTP load stream. It allows to more realistically mimic
physical users interacting with web application by entering real-world business data. It helps to
avoid creating large test datasets manually.

A data generator type determines what random value will be returned: Integer, Double, Date/Time,

The following DG types are supported

Returns an integer between the Min Value and Max Value.

Set Type to AutoIncrement to generate sequential integers starting from the Min Value. After
the Max Value is reached, the next integer is the Min Value. If uniqueness is required, make
sure that Max Value will not be reached.

Set Type to Random to generate random integers between the Min Value and Max Value. The
uniqueness of the random numbers is not guaranteed.

Returns a double precision point number between the Min Value and Max Value.

rns a date time object between the Min Value and Max Value.

Returns a new Guid.

Returns a set of characters with a length between Min Length and Max Length.

How to create a Data Generator

1. Select the data generators node on the Test Workflow Tree.

2. Click Create New Data Generator to bring up the generator dialog.

3. Select DG type that will return the appropriate datatype.

property to On Iteration or On Request

User Guide v1

PARAMETERIZING DYNAMIC TESTS 105

fly random value assigned to a variable with the
same name, which is used to parameterize requests. Depending on the DG type, the value can be
random or systematic. DG can be used for creating streams of emulated business data of different
types which can be included into the HTTP load stream. It allows to more realistically mimic

world business data. It helps to

A data generator type determines what random value will be returned: Integer, Double, Date/Time,

Set Type to AutoIncrement to generate sequential integers starting from the Min Value. After
the Max Value is reached, the next integer is the Min Value. If uniqueness is required, make

Set Type to Random to generate random integers between the Min Value and Max Value. The

Returns a double precision point number between the Min Value and Max Value.

rns a date time object between the Min Value and Max Value.

Returns a set of characters with a length between Min Length and Max Length.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 106

Tip:

Set the When To Evaluate property to On Iteration to generate a new value on every
iteration (default). In this case, the random values persist throughout the iteration for every
VU. This allows to use the same random value more than once.

Example: A web form requires entering an email address created by a data generator, twice
for verification purposes. In this case, set When To Evaluate property to On Iteration to
avoid failing due to entry mismatch

Alternatively, set it to On Request to generate a new value on every on every request

5. Configure remaining properties and give it a unique name. It will appear in the Variable Picker
when you create parameters. Use the Format String property to format the generator output.

6. Click Verify to test the return value.

7. Click Save & Close.

C:\NING\2013\2013-02\pic_31.png

When the DG is used to parameterize a request, it is referred to by its name surrounded by the
brackets, for example: {{MyRndInteger}}.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 107

When the Variable Picker is used to create a parameter, a properly formatted DG name reference
is inserted automatically.

Functions

A function instance returns a determined on-the-fly value of a specific type. The value is assigned
to a variable with the same name, which is used to parameterize requests.

The returned value depends on the function type and the context where the function is called from.
Some of the function types provide access to internal load engine variables.

The function instance is evaluated before issuing a request.

The following function types are supported:

Function Return Value

Agent Name The name of the current
agent

Agent VU
Number

The current VU number
within an Agent’s pool of
VUs

Test Case
Name

The current test case name

Agent
Iteration
Number

The current iteration number
executed by an Agent

URL Number The current request number
within a test case

Agent
Request
Number

The current request number
issued by an Agent from the
beginning of the test

Current Date
Time

The current date time stamp

Current UTC
Date Time

The current date UTC time
stamp

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 108

How to Create a Function Instance

1. Select the Function node on the Test
Workflow Tree.

2. Click New to bring up the Function dialog.

3. Select a Function Type.

4. Configure its properties and give it a unique
name. It will appear in the Variable Picker
when you create parameters. Use the
Format String property to format the
generator output.

5. Click Save & Close

When the Function instance is used to
parameterize a request, it is referred by its
name surrounded by brackets, for example:
{{MyFunction}}

When the Variable Picker is used to create a
parameter, the properly formatted function
instance reference is inserted automatically.

The function instance is evaluated just before
issuing the requests. For example, if you use
the Current Date Time function in 3
requests, it will be called 3 times and will
return 3 different instant time values.

Date Time Functions

StresStimulus supports two date and time functions:

 Current Date Time - Returns the local date and time at the time of evaluation.

 Current UTC Date Time - Returns the universal (GMT) date and time at the time of evaluation.

These functions use the following additional attributes:

 Time offset (s) - The number of seconds to add (or subtract if the value is negative) from the
resulting date time. Example: use this property to create an expiration time in the future.

 Use Unix Time format - This returns the date time as Unix time (Epoch time) format which is the
number of seconds that have elapsed since January 1, 1970.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 109

Formatting Data Generator and Function Output

Standard .NET formatting strings are used to format the output of the Data Generators and
Function. This provides a robust method of representing any numeric, GUID and date/time data
types as strings.

To receive a desire output string, enter the necessary formatting string into the FormattingString
property of a Data Generator. For example, to represent long format date and time as

"25 February 2013 10:25:30", use FormatString "U"

A quick reference guide to format string in StresStimulus is provided in the post Format Specifiers
available here.

The complete reference of .NET Formatting Types is provided here.

Note: The Current Date Time and Current UTC Date Time Functions have an additional
formatting property: Use Unix Time format? Select Yes to return the number of milliseconds
that have elapsed since Jan-1, 1970. Select No (default) for all other formatting options. This
format is used in several web frameworks, for example Oracle ADF.

4.4.2.2 Parameterization

Parameterization is a rule of replacing the recorded value in requests with a different dynamic or
static value that will be used on test replay. Dynamic values are derived from Variables.

All variable types, including extractors, datasets, data generators and functions are used in
parameterization in a very similar way. Any part of the request, including the header, URL, query
string and body, can be parameterized in a very similar way as well. The steps for parameterizing a
header using an extractor for example, are the same as the steps for parameterizing a body using a
function.

Dynamic values replacing recorded values are not limited to just a variable. You can use
expressions that combine several variables, text strings, or a combination of thereof. Variables or
text strings should appear one after another in the expression without delimiters. During the test
run, StresStimulus will resolve variables into strings and concatenate all dynamic and static strings
to create an expression that will be inserted in the request.

Test Integrity Safeguard

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 110

A parameter can operate correctly only if it uses a correct existing variable. StresStimulus has
built in verification that preserves the test case integrity.

 If a variable is renamed, all parameters using it will be automatically adjusted to use the new
name.

 If a variable is deleted, then all depedent parameters will be deleted as well.

Such validation helps to avoid sending incorrect requests during the test and thus helps to
prevent test errors.

Creating a Parameter

There are two methods of creating parameters:

 Using the pop-up parameterization window

 Using the parameterization window in the right frame

Creating parameters using the pop-up parameterization window

1. Right-click on a request (a) in the Test Case Tree and select Create Parameter (b) in the
Context menu.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 111

2. In the appeared pop-up parameterization window, select a tab (c) corresponding to one of three
request parts:

o Request Header

o Request URL and Query

o Request Body

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 112

Note:

 GET requests do not have a Body tab.

 While virtually any header can be parameterized, it is recommended to change only custom
headers or values added by your application. Otherwise, modifying standard headers can
cause the server to fail the request.

4. Depending on the selected tab and content of the request, StresStimulus will automatically select
one of three parameterization controls:

o Parameterization Grid (d)

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 113

o Parameterization Editor (e)

o Free Format Request Editor (f)

For example:

 A request part that can be represented as a name/value pair form is shown in Parameterization
Grid by default.

 A request part that cannot be represented as a name/value pair form is shown in the Free
Format Request Editor.

Note: Parameterization controls that should not be used are automatically disabled to prevent
user errors.

If necessary, select another available control that is more suitable for your situation. For
example, you can switch from the Parameterization Grid to the Parameterization Editor if you
need to enter long value strings or use the Find and Replace by value feature. To select a
different Parameterization Control, click the corresponding button on the toolbar.

The final steps of creating a parameter depend on which parameterization control you will use. The
next section describes parameterization controls.

Creating parameters using the parameterization window in the right frame

1. Select the Parameters node in the Workflow Tree.

BUILDING TEST CASE

2. Select a request on the Test Case Tree.

3. The parameterization window is displayed on the right frame. Use it similarly to the pop
parameterization window described above.

Parameterization Controls

Three parameterization controls are compared in the table below.

Category Feature

Toolbar
button

Functionality Supports
name/value pair
format

Preserves
name/value pair
structure

BUILDING TEST CASE - PARAMETERIZING DYNAM

2. Select a request on the Test Case Tree.

3. The parameterization window is displayed on the right frame. Use it similarly to the pop
ndow described above.

Three parameterization controls are compared in the table below.

Parameterization Controls

Parameterization
Grid

Parameterization
Editor

name/value pair
Yes Yes

name/value pair
automatically automatically

User Guide v1

PARAMETERIZING DYNAMIC TESTS 114

3. The parameterization window is displayed on the right frame. Use it similarly to the pop-up

Parameterization Free Format
Request
Editor

Yes

automatically manually

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 115

Parameterization Controls

Supports free
format (non-
name/value

pair; e.g. JSON,
XML)

No No Yes

Supports WCF
binary

No No Yes

Scope of editing one parameter at a
time

one parameter at a
time

entire request
part

Edit short string
values

Yes Yes Yes

Edit long string
values

No Yes Yes

Find parameters by
name and

Replace their
values

Yes No No

Find and Replace
value

No Yes Yes

Supports Variable
Picker

left-click right-click right-click

In which
request

part can be
used

Request Header Yes Yes No

Request URL and
Query

Yes Yes Yes

Request Body Yes Yes Yes

C:\NING\2013\2013-12\11.xlsx

Tip: Which Parameterization Control to use:

Parameterization Grid: for configuring name/value pair parameters.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 116

Parameterization Editor: for configuring name/value pair parameters with long values or
when Find and Replace is needed.
Free Format Request Editor: for configuring free format requests.

Parameterization Grid

Depending on the selected request part, the first read-only column displays:

o Header - header names

o Query Parameter - query string parameter names

o Form Field - web form parameter names

Recorded Value: a read-only column that, depending on the selected request part, displays:

o recorded header values

o recorded query string parameter values

o recorded web form parameter values

Replace with: a column for storing new dynamic or static values replacing the recorded values.
After recording a test case, this column contains:

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 117

o "…" - A placeholder for entering enter a new value. If no value is entered, then the
recorded value will be used.

o {{Auto-Correlated}} - A system variable indicating that this field will be autocorrelated.

Tip: To display the autocorrelation details, click Show autocorrelation parameter details on
the toolbar. The extractor names will will be displayed. To switch back to the default view,
click Hide autocorrelation parameter details.

It is recommended to use the Variable Picker for entering a variable into the Replace with column
for a parameter. You can also enter an expression containing static text, variables or combination
of thereof.

Creating an expression containing one or several variables and arbitrary text:

 use variable picker to enter one variable at a time;

 manually cut and paste variables into a text editor (i.e.Notepad) one after another;

 insert text strings before, between or after the variables, if necessary;

 copy and paste resulting expression back to the Replace with column.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 118

Parameterizing URL. URL (GET or POST, with or without query string) can be
parameterized using a pseudo header called {PATH} located under the Header tab. To do so,
right-click in the Value column of the URL row and in the Parameterization Control select
desired extractor or data source field.

Variable Picker

The variable picker control helps to select and enter a variable name in the correct format when
creating a parameter. The variable picker is used in all 3 parameterization controls:
Parameterization Grid, Parameterization Editor and Free Format Request Editor.

Using Variable Picker

To enter a variable in the Replace With column in the In Parameterization Grid, follow these steps:

1. Invoke Variable Picker, using one of the following methods:

o Click the … column.

o Click over {{Auto-Correlated}} to override autocorrelation with a parameter.

o If the Replace with column already contains a variable or other static text, click where
you want to inject a new variable, or select the text that you would like to replace. Then
right-click.

2. The variable picker will appear with a list of the existing variables in four categories.

o Extractors

o Datasets

o Data Generators

o Functions

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 119

3. Select a variable in the Extractor, Data Generator or Function category, or select a variable as a
Dataset, field and databinding method.

4. The Variable Picker will disappear and the variable will be injected into the request parameter.

Databinding

Databinding is a rule for fetching dataset records used for parameterization requests. The dataset
stores multiple sequential records. Every time a dynamic request with a parameter bound to the
dataset is generated, a single dataset record is consumed. In some tests it is necessary to use
different records every time by repeatedly looping through the records in the dataset. However, in
other tests, it is required that a record is repeated for either the same VU, or requests or iterations
or combinations of thereof. For example, in login requests a VU has to use the same credentials
stored in the dataset on all requests and all iterations. At the same time, to realistically load test a
data entry scenario, a VU needs to use different dataset records.

StresStimulus supports seven databinding methods shown below. They appear in the variable
picker control under the selected dataset field. To display the description of a data binding method,
mouse over it.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 120

c:\NING\2013\2013-12\12.pdn

A description of the databinding methods is provided in the table below. The following examples
show which dataset record is used in each method: The sample dataset has 20 records. The test
case includes 5 parameterized requests bound to this dataset. Two VUs run the test through two
iterations. Both VUs traverse through their respective iterations asynchronously as they emulate
independent physical users, so there is no synchronization between requests issued by different
users.

Description Example

1. Request-Bound data-binding method (Req-Bound).

Every parameter requested by any VU in any iteration gets a
subsequent dataset row.

VU1 VU2 VU1 VU2

Req. Iter.
1

Iter.
1

Iter.
2

Iter.
2

1 1 2 10 13

2 3 4 12 14

3 5 7 17 15

4 6 9 18 16

5 8 11 19 20

2. VU-Bound data-binding method (VU-Bound).

Every VU gets a subsequent dataset row used for all its
parameters requested in all iterations.

VU1 VU2 VU1 VU2

Req Iter.
1

Iter.
1

Iter.
2

Iter.
2

1 1 2 1 2

2 1 2 1 2

3 1 2 1 2

4 1 2 1 2

5 1 2 1 2

3. Iteration-Bound data-binding method (Iter-Bound).

Every iteration gets a subsequent dataset row used by all VUs
in all requested parameters.

VU1 VU2 VU1 VU2

Req Iter.
1

Iter.
1

Iter.
2

Iter.
2

1 1 1 2 2

2 1 1 2 2

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 121

Description Example

3 1 1 2 2

4 1 1 2 2

5 1 1 2 2

4. Iteration-Request-Bound data-binding method (Iter-Req-
Bound).

Every subsequently requested parameter in every iteration
gets the subsequent dataset row shared by all VUs.

VU1 VU2 VU1 VU2

Req Iter.
1

Iter.
1

Iter.
2

Iter.
2

1 1 1 6 6

2 2 2 7 7

3 3 3 8 8

4 4 4 9 9

5 5 5 10 10

5. VU-Iteration data-binding method (VU-Iter-Bound).

Every VU on every iteration gets a unique value. The value is
the same for all requests within the iteration.

VU1 VU2 VU1 VU2

Req Iter.
1

Iter.
1

Iter.
2

Iter.
2

1 1 2 3 4

2 1 2 3 4

3 1 2 3 4

4 1 2 3 4

5 1 2 3 4

6. Parameter- Bound data-binding method (Param-Bound).

Every requested parameter gets a subsequent dataset row
shared by all VUs in all iterations.

VU1 VU2 VU1 VU2

Req Iter.
1

Iter.
1

Iter.
2

Iter.
2

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 122

Description Example

4 4 4 4 4

5 5 5 5 5

7. Random data-binding method (Random).

Every request parameter gets an arbitrary dataset row.

Note: If the number of records in a dataset is insufficient, then the records will be reused
according to the round-robin algorithm.

Creating Multiple Parameters from Grid

Sometimes the same variable should be used across multiple GET or POST requests. For
example, in the application where the session ID is marshaled as a query parameter, this
parameter will be included in every request.

StresStimulus allows to quickly parameterize multiple similar parameters using the Find and
Replace feature. To parameterize multiple requests:

1. Select a parameter.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 123

2. Click Find and Replace on the toolbar or hit Ctrl+F to show the Find and Replace dialog.

3. The selected parameter name will be displayed in the Parameter Name box. You can select a
different parameter from the drop-down.

o If the Header tab is selected, the drop-down will display all headers.

o If the URL and Query tab is selected, the drop-down will display all query string
parameters in the name/value format.

o If the Body tab is selected, the drop-down will display all form fields.

4. A current value from the grid's Replace With cell will be displayed in the Replace With text box.
Right-click and select a variable from the Variable Picker.

5. Click Find to find the next parameter by name. The search is conducted across all requests in
the test case. Only the selected part of the request is searched. For example, if the Body tab is
selected, then only form fields will be searched.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 124

6. Click Replace to replace the value of the current parameter with the new value and then find the
next parameter with the same name.

7. Click Replace All to bulk replace values in all parameters with the search name.

Tip: To selectively parameterize multiple requests, click the Replace or Find buttons
depending whether you need to create or skip the parameter.

To parameterize all requests with the searched parameter in one sweep, click Replace All.

Parameterization Editor

The Parameterization Editor is used for configuring name/value pair parameters. Only the value
portion can be changed. It has advantages over the Parameterization Grid in the following cases:

 The values are long strings that are difficult to handle in the grid.

 Multiple similar parameters across many requests are necessary and the Find and Replace
commands are more advanced in the editor compared to the grid.

Using Parameterization Editor

1. To switch to the Parameterization Editor from the Parameterization Grid click the switch button

2. The parameterization editor will appear.

3. To edit data, select text in the Value Line that should be replaced and right-click in the Value
Line. Then select a Source Variable in the Variable Picker.

4. When you finish editing, click Save.

5. To discard the changes, click Undo To The Last Save.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 125

Free Format Request Editor

The Free Format Request Editor is used for parameterizing requests without preserving their
name/value structure, if it exists. This is the only parameterization control available for requests that
do not have a name/value structure. Here are a few examples of such requests:

 GET request query string does not conform to the format ?<name>=<value>.

 GET requests with Restful URLs.

 POST request body that includes XML or JSON.

 POST request body that includes binary, such as WCF binary or AMF encoding.

Use the Free Format Request Editor similarly
to the Parameterization Editor. To edit data,
select a value (a) that should be replaced and r
ight-click . Then select a source variable in the
Variable Picker (b). The color-coded read-only
variable control (c) will be inserted. it has the
following format (c):

{{<variable>}}<value>

where:

<variable> is the name of the variable
selected in the variable picker;

<value> is the recorded value.

When you finish editing, click Save (d).

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 126

Concatenating variables

To concatenate two variables, after
inserting the first variable, place the
cursor at the end of the first variable
control, right-click and select the second
variable in the Variable Picker. The
second variable control will be inserted.

Parameterizing WCF binary requests:

 You can parameterize textual tokens
embedded into binary requests, such as
AMF requests used in Flash and AIR
applications. A token can be surrounded
by a binary unreadable message. Just
select the recorded token, right-click and
in the variable picker, select a variable
to replace the token.

 WCF binary requests can be
parameterized as easily as regular text
encoded requests because
StresStimulus decodes them and
displays as text. The message "Format:
WCF binary" will appear on the toolbar.

Parameterizing RESTful requests:

To parameterize a RESTful GET request
(without a query string), replace any sub-
string of the URL with a variable. For
example, If you recorded the request
http://example.com/resources/item01
, then you can replace the "item01" with
a dataset value or extractor.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 127

Changing requests with name/value structure

 Requests that have a name/value structure
can be modified using the Free Format
Request Editor. However, all changes made in
the Parameterization Grid or Parameterization
Editor will be lost. You will be prompted about
that when switching to Free Format Request
Editor.

 When switching from the Free Format Request
Editor back to the Parameterization Editor or
Parameterization Grid, all changes will be
reverted to its recorded state.

Note: After creating at least one free-
format parameter in the response, you can
no longer safely edit it. If you change the
response in the session inspector and click
Save, you will receive a warning.

If changes you made in the response are
positioned after the free format parameter,
then such changes will not break the
parameter.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 128

Creating Multiple Parameters at Once

Sometimes the same variable should be used
across multiple GET or POST requests. For
example, in the application where the session
ID is marshaled as a query parameter, this
parameter will be included in every request.

In some applications, a parameter's value
submitted multiple times can have a different
name in different requests.

If such parameter has to be parameterized,
searching by the parameter name will not find
all instances of the parameter. In this case,
instead of the Parameterization Grid, use the
Parameterization Editor.

StresStimulus allows to quickly parameterize
multiple similar parameters and search by
name and value using the Find and Replace
feature in Parameterization Editor and Free
Format Request Editor.

To parameterize multiple requests:

1. Select a value to parameterize

2. Click Global Find and Replace

3. Searched value will appear in the Find
What box

4. Right-click in the Replace with box and in
the appeared Variable Picker, select a
variable. Alternatively, you can type your own
value, wildcard or regular expression.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 129

5. Select Search Scope as This Request or All
Requests

6. Check other applicable options

7. Click Bulk Replace

You can also create multiple parameters from an existing parameter. Right click on an existing
parameter (a) and select Create More Like This (b). The find and replace dialog will appear with
the find and replace criteria pre-filled. Click the Bulk Replace button (c) to create all possible
similar parameters.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 130

Regular Expression and Wildcards

When the regular expression or wildcard option is selected, the entire value is replaced unless a
match group is specified, in which case only the first group is replaced. The examples below show
the result of replacement with variable: {{MyVariable}}.

Regular Expression Examples

Expression Match Result

([0-9A-F]{8}\-{0,1}[0-9A-F]{4}\-{0,1}[0-9A-
F]{4}\-{0,1}[0-9A-F]{4}\-{0,1}[0-9A-F]{12})

b558b213-8501-894b-b0b3-
39c7a4f2e840

{{MyVariable}}

<id>(\d+)</id> <id>123456789</id> <id>{{MyVariable}}</id>

Wildcard Examples

Expression Match Result

{id : "(*)"} {id : "jd123"} {id : "{{MyVariable}}"}

5_char_secret=(?????) 5_char_secret=5d3hp 5_char_secret={{MyVariable}}

4.4.3 Automatic Parameterization

One of the main challenges in creating a load testing script is to identify dynamic variables. Your
knowledge about the tested website design may be insufficient to quickly locate and manually
configure all dynamic parameters. Your test case can be configured much faster using the
automatic parameterization method consisting of three steps:

1. Verify. This step generates a list of errors and warnings displayed in the Session Verification
Tree.

2. Run Parameter Finder. This step finds requests that likely need to be parameterized and gives
recommendations about missing extractors and parameters.

3. Create extractors and parameters. This step can be performed in one or two ways

a. Semi-automatically: Run the Parameter Tool to auto-configure an extractor with related
parameters.

b. Automatically: Run the AutoConfigurator to create all extractors with related parameters.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 131

4.4.3.1 AutoCorrelation

In StresStimulus, the majority of dynamic parameters are found and correlated automatically.
Autocorrelation finds hidden dynamic parameters in the query string, body, header or restless URL
in all web application platforms, including binary or XML messages. In simple and medium tests
cases, typically the entire parameterization is configured automatically.

Autocorrelation runs automatically in the test wizard (1) after the test case recording. The
autocorrelation progress bar displays the number of create parameters.

It may be necessary to rerun autocorrelation manually after the following changes in the test case:

 sessions are deleted, repositioned or more sessions are added

 the property MIME Types requested sequentially in Configure Test --> Other Options was
changed (for more see Request Concurrency

To re-run autocorrelation manually, click Test Wizard (2) on the Workflow Tree toolbar,then click
Next (3) one or several times until you execute the Autocorrelation step (4).

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 132

Autocorrelation transparency. Autocorrelation script is available for review. An autocorrelation
parameter consists of an autocorrelation extractor (a) and a parameter (b). By default, the extractor
is hidden and the parameter is marked as {{Autocorrelated}} (c)

To display the hidden details, click Show autocorrelation parameters details (d) on the test case
tree toolbar. The extractors will un-hide and their names will be displayed next to the corresponding
parameters (e). To switch back to the default view, click Hide autocorrelation parameters details
(f).

Note: Autocorrelated extractors and parameters have names that begins with two
underscores.

Deleting & Restoring AutoCorrelation Rules

AutoCorrelation creates a set of rules, each of
which includes an extractor and one or several
parameters necessary to keep your test from
application errors. You can review, change or
delete these rules as follows:

Warning: Modifying and Deleting
AutoCorrelation rules is an advanced script
development technique. If not performed
properly, it can cause test errors.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 133

1. Navigate to the Extractors node (a) in the
Navigation Tree.

2. By default, only user created objects a are
displayed and autocorrelation objects are
hidden. To display then, click Show
autocorrelation parameter details (b) on the
toolbar. The object tree will display the
following hierarchy of objects: Requests (c) ->
Extractors (d) -> Parameters (e). You can
expand / collapse the tree to the detail level
you need.

3. To review the selected extractor, right-click
and select Edit (f), or click Edit on the
toolbar. The Extractor editor (g) will appear.
When complete reviewing the extractor, close
the editor.

4. To edit the extractor, make necessary
changes in the extractor editor and click Save
(h). For more about the extractors, check the
Extractors section.

5. To review a parameter that uses the extractor:

a. Double-click a parameter (i)
subordinate to the extractor. Test
case tree on the left will highlight the
parameter (j).

b. Navigate to the Parameter node (k) in
the Navigation Tree.

c. Navigate through tabs (l) Header, URL
and Query, or Body to find in which
part of the request this parameter is
located.

d. The parameter definition will be
displayed in on of three
parameterization controls:

i. Parameterization Grid (m)

ii. Parameterization Editor

iii. Free Format Request Editor

To edit or delete a parameter, follow these
steps depending on the parameterization

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 134

control used.

6. To restore autocorrelation, click the Test
Wizard (n) button on the Navigation Tree
toolbar and follow the step off re-creating
autocorrelation rules.

4.4.3.2 Verifying Test Case

After recording a test case, it's highly recommended to verify it. If you run a test without verification,
you may encounter issues related to incorrect or incomplete test configuration. The purpose of
verification is to discover such issues.

This information should be used to add some configuration settings that will fix verification errors or
warnings. After all verification errors and warnings are resolved, all the test errors are likely related
to your website’s inability to properly handle multiple users.

During verification, StresStimulus replays the recorder test case once with one virtual user in debug
mode. Reissued sessions are automatically compared with the corresponding recorded sessions,
and the recorded and replayed server responses are analyzed. After the verification is completed,
errors, warnings, configuration recommendations and other diagnostic are displayed.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 135

Note: Some Configure Test settings,
such as browser type and network
type are not simulated during verify.

To start the verify process:

1. Click Verify & Auto-Config (a) in the
workflow tree.

2. A pop-up dialog Verify the Test Case (b)
will appear.

3. Sometimes it is desirable to verify the test
case with a different VU. For example, if a
test case uses a dataset to parameterize an
authentication form, then you might want to
verify a few times under different credentials
each time. To simulate a different VU, set
the numeric box (c) to the desired VU.

4. Optionally, you can specify a session
number, after which Verify will stop, to save
time. For example, if the error / warnings
occurred in the sessions 20, 22, 40, 42, 60
… and you just addressed session 20, then
you can run Verify to session 40 or 42. To
do so, enter the session number in the Stop
after session box (d).

5. You can add a description for each verify
run (e) so that you can keep track of the
changes you make to your test case
between verifys.

6.During verify, the test case is replayed at a
slower pace to give user a chance to
preview succession of web pages appeared
in the web view. To run verify at a faster
pace without the page preview, check Quick
Verify box (f).

7. Click Verify. The session grid will display
sessions as they get issued in real time.

Tip: If during the test case verification
some errors or warnings are

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 136

discovered, they should be reviewed
one by one in the order of appearance
from top to bottom. Depending on the
situation, use the appropriate
technique to address them. For
example, create a missing parameter,
delete a request that should be
excluded from the test or ignore
warnings that are irrelevant to the
test's execution. After that, re-run
Verify and move to the next error
warning resolution. Since you should
only focus on the next 1-2 errors/
warnings, there is no need to Verify
the entire test.

8. During the test replay, the browser object
displays the sequence of the web pages as
they get accessed. This helps to quickly
determine whether the test case is replayed
correctly. For example, if the pages in the
browser object repeatedly display the login
screen or error messages, it is an indication
of authentication or session integrity issues.

o

 In the standalone version,
webpage view Is located in
the right pane.

 In the add-on version,
Fiddler automatically
switches to the Inspectors -
> web view tab

9. The following options are available to
control the verification process:

 Click Pause (h) to suspend issuing
requests. Click Resume to continue
verification

 Click Step (g) after pausing to send a
single next-in-the-queue request for every
VU. This option is used to further debug

BUILDING TEST CASE

the test case.

 Click Abort (i) to stop verification

Info: During verify, timeout mechanism
is disabled. StresStimulus will wait for
all responses to come back,
wait time is not limited by the timeout
of the request.

9. If verification determines that there are
too many redundant extractors which can be
safely deleted, it will prompt you to confirm
their deletion. Autocorrelation sometimes
creates excess extractors to avoid
correlation errors. They should be deleted to
reduce resource utilization.

10. After Verify is completed, a new tab (j)
will appear. It displays Session Verification
tab (k) with tree showing the outcome of
verification for each sessions and the test
case overall. Next to every request, there is
a status image describing the outcome. One
of 4 statuses can be assigned to a session:

Status Description

Pass Session completed
normally

Error Sessions with errors
related to the test
configuration.
Configuration
errors indicate that some
test configuration should
be adjusted. Most often
such errors can be fixed
by adding missing
parameters. Try to find
and create such
parameters using
Parameter Finder.

BUILDING TEST CASE - PARAMETERIZING DYNAM

(i) to stop verification

: During verify, timeout mechanism
is disabled. StresStimulus will wait for
all responses to come back, and the
wait time is not limited by the timeout

9. If verification determines that there are
too many redundant extractors which can be
safely deleted, it will prompt you to confirm
their deletion. Autocorrelation sometimes

excess extractors to avoid
correlation errors. They should be deleted to

10. After Verify is completed, a new tab (j)
Session Verification

tab (k) with tree showing the outcome of
sessions and the test

case overall. Next to every request, there is
a status image describing the outcome. One
of 4 statuses can be assigned to a session:

Description

Session completed

Sessions with errors
the test

configuration.
Configuration-related
errors indicate that some
test configuration should
be adjusted. Most often
such errors can be fixed
by adding missing
parameters. Try to find
and create such
parameters using
Parameter Finder.

User Guide v1

PARAMETERIZING DYNAMIC TESTS 137

BUILDING TEST CASE

Warning Sessions with issues that
may or may not be related
to the test configuration.
Try using Parameter
Finder to eliminate or
reduce number of
warnings. After that,
inspect remaining
warnings to make sure
that they are not caused
by missing settings in the
test configuration.

Notification Sessions with issues
unrelated to the test
configuration. Notifications
can be rectified by refining
your application. For
example, broken links of
missing images will
causes 404 HTTP errors.
Such errors can be fixed
by making a
the tested application.

11. To display a subset of sessions with the
same status, click one of the filtering buttons
(l) on the toolbar session verification: Errors,
Warnings or Notifications. To display all
sessions, click URLs.

12. To display a tooltip with a specific error
or warning, mouse-over a session (m).

13. To view session content, double
the Recorded or Replayed node (n) and
Session Inspector (o) will appear.

14. Right-click a session to display the
context menu. To compare recorded and
replayed sessions, click Compare
context menu or on the toolbar, and the
Compare Sessions Inspector
appear. Session Inspectors are described in
the next section.

15. The Verify command also generates an
Extractor Verification Tree
separate tab, it displays extractor values,

BUILDING TEST CASE - PARAMETERIZING DYNAM

ons with issues that
may or may not be related
to the test configuration.
Try using Parameter
Finder to eliminate or
reduce number of
warnings. After that,
inspect remaining
warnings to make sure
that they are not caused
by missing settings in the

figuration.

Sessions with issues
unrelated to the test
configuration. Notifications
can be rectified by refining
your application. For
example, broken links of
missing images will
causes 404 HTTP errors.
Such errors can be fixed
by making adjustments in
the tested application.

11. To display a subset of sessions with the
same status, click one of the filtering buttons
(l) on the toolbar session verification: Errors,
Warnings or Notifications. To display all

play a tooltip with a specific error
over a session (m).

13. To view session content, double-click
node (n) and

(o) will appear.

click a session to display the
context menu. To compare recorded and

Compare (p) in the
context menu or on the toolbar, and the
Compare Sessions Inspector (q) will
appear. Session Inspectors are described in

command also generates an
Extractor Verification Tree (r). In a
separate tab, it displays extractor values,

User Guide v1

PARAMETERIZING DYNAMIC TESTS 138

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 139

errors (if the extractors cannot be validated)
or warnings (if the extractors are not used).

16. Click Verify Description (s) to see the
test case you verified, the time or the
description. You can also modify the
description here.

Tip: You can export a session replayed during verify and save it as an .saz file. To do so,
right-click anywhere in the verification tree, then select Export Replayed.

Verification Errors and Warnings

StresStimulus uses a heuristic algorithm to mark verification errors and warnings, and sometimes
false positives are identified.

Suppressing errors and warnings

In order to ignore these errors and warnings from future verification, right-click and select Ignore
warnings/errors.

To undo this option, right-click and select Undo Ignore warnings/errors.

Note: Sessions that have errors suppressed, will not show up on the test error report.

Errors and Warnings Details

A list of diagnostic messages is provided below.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 140

Status
Type

Diagnostic Message

Error Error in the response. Response code is 4xx or 5xx.

Error The response was not received

Warning Replayed request was not authenticated. Check Test authentication settings. If
subsequent requests are authenticated, then this may be normal.

Warning Response code does not match the recorded code.

Warning Redirect to a different URL.

Warning First request in the test case contains ASP.NET SessionId cookie. The beginning of
the test case may be missing.

Warning Response size is significantly different from the recorded size.

Notification Error in the response code during recording. This error is unrelated to load testing.

Notification The resource was cached during the Test Case recording (response code 304) and
not cached during the replay (response code 200).

Notification The resource was cached during the Test Case recording (response code 304) and
not cached during the replay (response code 200).

Notification The resource was not cached during the Test Case recording (response code 200)
and cached during the replay (response code 304).

4.4.3.3 Resolving Errors and Warnings

If all requests pass verification, and the Verification Tree displays all green checkboxes, then your
test case is configured and you can move on to the next step of configuring the load and running
the test.

However, sometimes the session verification tree displays diagnostic messages. This means that
some issues were discovered when a virtual user replayed the test case.

Different issues can impact test accuracy with various degrees, from an insignificant impact to total
test failure. For example, if a virtual user sends a request to a static image without caching
headers, the test's accuracy will be minimally affected. However, if the authentication process fails,
then all remaining requests will not be authenticated and the test will be totally incorrect.

In order to address verification issues, try to find what is causing them, fix the problem and then
verify the test case again. A solution to the problem depends on the type of message that you
receive. In some instances, such as authentication failures, fixing an earlier issue will solve later
ones. Therefore it is recommended that issues be addressed from the beginning of the test case to
the end.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 141

The table below lists the most frequent issues and gives some recommendations on how to resolve
them.

Session
Status Type

Diagnostic Message Example Possible Resolution

Error Response Code 500
Server error.

Find and create missing parameter(s) as
described below.

Warning Response Code 401.
The user is not authenticated.

The replayed request was not
authenticated.
Check Test authentication settings.
If subsequent requests are authenticated,
this may be normal.

Warning Verified response code does not
match the recorded response code
Example: The verified response code
is 302 and the recorded response is
code 200.

Find and create missing parameter(s).

Warning Verified redirect URL is different than
the recorded redirect URL.

1. If you are redirected to the same page
but a different query string, this may be
normal.
2. If you are redirected to a different

page, you most likely need to create a
parameter.

Warning Verified response size is significantly
different from the recorded response
size.

Compare the recorded and replayed
sessions. If the verified response is
expected then ignore this warning.
Otherwise, create a parameter.

Notification Response Code 404.
The resource is not found on the
server.

1. Add the missing resource to the server.
2. If the resource is a static file (such as

an image) that is not significant from a
performance standpoint, delete this
request from the test case.

Notification The first request in the test case
contains an ASP.NET
SessionId cookie. The beginning of
the test case
may be missing

This may be an indication that the
beginning of the test case is not recorded.
Re-record if this is true, otherwise ignore
it.

Notification The resource was cached during Test
Case recording (response code 304)
and not cached during replay

This notification can be ignored. If you
with to avoid it, consider:

BUILDING TEST CASE

Session
Status Type

Diagnostic Message Example

(response code 200).

Notification The resource was not cached during
Test Case
recording (response code 200) and
cached during
replay (response code 304).

One of the most frequent reason of load test errors is missing parameter(s).
methods of identifying and and creating missing parameters which are described in the next several
subsections listed below.

Parameter Finder

Parameter Finder finds possible missing parameters and directs which extractors should be cre
to feed into these parameters. You need to run Parameter Finder only if test case verification
created any diagnostic errors or warnings in the Session Verification tree.

1. Click Run Parameter Finder.

2. After Parameter Finder completes execution, i
generates the Parameter Finder Tree, which
displays suggested missing objects. The
Parameter Finder Tree has two views.

a. In the Group by Extractors view:

o

BUILDING TEST CASE - PARAMETERIZING DYNAM

Diagnostic Message Example Possible Resolution

(response code 200). - when recording a test case select
browser Private Mode. See
with Web Browser

- or clear the browser cache and re
recording the Test.

- enabling cache control emulation in
StresStimulus. See
Rules

The resource was not cached during

recording (response code 200) and
cached during
replay (response code 304).

Disable cache control. See
Caching Rules

One of the most frequent reason of load test errors is missing parameter(s).
methods of identifying and and creating missing parameters which are described in the next several

Parameter Finder finds possible missing parameters and directs which extractors should be cre
to feed into these parameters. You need to run Parameter Finder only if test case verification
created any diagnostic errors or warnings in the Session Verification tree.

1. Click Run Parameter Finder.

2. After Parameter Finder completes execution, it
generates the Parameter Finder Tree, which
displays suggested missing objects. The
Parameter Finder Tree has two views.

a. In the Group by Extractors view:

User Guide v1

PARAMETERIZING DYNAMIC TESTS 142

Possible Resolution

when recording a test case select
browser Private Mode. See Recording
with Web Browser

or clear the browser cache and re-
recording the Test.

enabling cache control emulation in
StresStimulus. See Test Case: Caching

Disable cache control. See Test Case:

One of the most frequent reason of load test errors is missing parameter(s). There are several
methods of identifying and and creating missing parameters which are described in the next several

Parameter Finder finds possible missing parameters and directs which extractors should be created
to feed into these parameters. You need to run Parameter Finder only if test case verification

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 143

 Each parent node
represents a
recommended extractor
with indication to which
prior request it should
be created from.

 Each child node
represents a request
with the missing
parameter's name along
with the recorded value
that should be
parameterized.

b. In the Group by Requests view:

o

 Each parent node
represents a request
that likely requires
parameterization.

 Each child node
represents a pair of:

1. The missing
parameter's name along
with the recorded value
that should be
parameterized.

2. The recommended
extractor with indication
to which prior response
it should be created
from

To switch between two views, use the Click To
Group By button (c).

Tips:

 To copy the selected object content, hit

BUILDI

(Ctrl+C).

 To find and highlight an object selected on
the Parameter Finder Tree on the Test
Case Tree, double-click the object or right
click and select Highlight.

Note: Parameter Finder inspects a test
case and the result of the Verify process,
so you must run verify before running
parameter Finder for the first time. After
adding or removing extractors and
parameters, in order to determine if all
missing objects are created, rerun
Parameter Finder. In order to determine if
added parameterization fixed all test errors,
rerun Verify.

Parameter Creator

Creating Extractors and related parameters recommended by the Parameter Finder can reduce test
configuration errors and help make the test more realistic.
creation of such objects.

To use Parameter Creator, follow
these steps:

1. Select an extractor.

2. Click Parameter Creator:
configure an Extractor and all
Parameters for the selected node on
the toolbar or right-click and select it on
the context menu.

3. In the popup extractor window, the
Text Before and Text After properties
are already pre-filled.

4. You can examine and adjust the
extractor configuration if necessary, or
simply click Save to create the

BUILDING TEST CASE - PARAMETERIZING DYNAM

To find and highlight an object selected on
the Parameter Finder Tree on the Test

click the object or right-

Parameter Finder inspects a test
case and the result of the Verify process,
so you must run verify before running
parameter Finder for the first time. After
adding or removing extractors and
parameters, in order to determine if all

ated, rerun
Parameter Finder. In order to determine if
added parameterization fixed all test errors,

Creating Extractors and related parameters recommended by the Parameter Finder can reduce test
configuration errors and help make the test more realistic. Parameter Creator

, follow

Parameter Creator: Auto-
configure an Extractor and all
Parameters for the selected node on

click and select it on

3. In the popup extractor window, the
r properties

4. You can examine and adjust the
extractor configuration if necessary, or
simply click Save to create the

User Guide v1

PARAMETERIZING DYNAMIC TESTS 144

Creating Extractors and related parameters recommended by the Parameter Finder can reduce test
Parameter Creator automates the

BUILDING TEST CASE

extractor.

5. Initially, the Parameter Finder Tree
designates all missing object with the
image. As missing objects get created
their image is modified to a green
checkbox.

6. After the extractor is created, Auto
Configurator displays a Do you want
to automatically create all
parameters using this extractor?
MessageBox.

a. To create all the parameters using
the extractor automatically at once,
click OK.

b. To create the parameters
automatically one-by-one, click Cancel
and then select a parameter one at a
time, right-click and select Auto
Parameter or click the same button on
the toolbar.

7. Run Verify Test Case again to check
if newly created objects reduce the
number of errors or warnings. Delete
unnecessary objects.

Auto-Configurator

Auto-Configurator creates all extractors and parameters discovered by the Parameter Finder, in
one sweep. It automatically executes the
object. It is the fastest way to configure your test. However, it does not allow to review new objects
before creating them, and as a result, some unnecessary objects can be crea

Note: Unnecessary objects do not address any errors or warnings discovered during test
verification. They can even increase the number of errors and can create performance
overheads on the test machine.

Tip: When to use Auto-Configurator

 If you are not familiar with the tested website and manually examining every extractor and

BUILDING TEST CASE - PARAMETERIZING DYNAM

5. Initially, the Parameter Finder Tree
designates all missing object with the ?

jects get created
their image is modified to a green

6. After the extractor is created, Auto-
Do you want

parameters using this extractor?

a. To create all the parameters using
tractor automatically at once,

b. To create the parameters
one, click Cancel

and then select a parameter one at a
click and select Auto-Config

Parameter or click the same button on

Case again to check
if newly created objects reduce the
number of errors or warnings. Delete

Configurator creates all extractors and parameters discovered by the Parameter Finder, in
tically executes the Parameter Creator multiple times to create every missing

object. It is the fastest way to configure your test. However, it does not allow to review new objects
before creating them, and as a result, some unnecessary objects can be crea

Unnecessary objects do not address any errors or warnings discovered during test
verification. They can even increase the number of errors and can create performance
overheads on the test machine.

Configurator

not familiar with the tested website and manually examining every extractor and

User Guide v1

PARAMETERIZING DYNAMIC TESTS 145

Configurator creates all extractors and parameters discovered by the Parameter Finder, in
multiple times to create every missing

object. It is the fastest way to configure your test. However, it does not allow to review new objects
before creating them, and as a result, some unnecessary objects can be created.

Unnecessary objects do not address any errors or warnings discovered during test
verification. They can even increase the number of errors and can create performance

not familiar with the tested website and manually examining every extractor and

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 146

parameter is difficult.

 If you need to quickly complete test configuration for preliminary load testing.

Otherwise, create parameters one-by-one using the Parameter Creator.

Run the Auto Configurator after running the Parameter Finder. On the Verify & Auto-Config
toolbar, click Run Auto-Configurator.

After the Auto-Configurator completes execution, all missing objects will be designated with a green
checkbox on the Parameter Finder Tree.

Run Verify Test Case again to check if the newly created objects reduced the number of errors or
warnings. Delete unnecessary objects.

Resolving Errors Manually

If Parameter Finder, Parameter Creator and Auto-Configurator failed to find all necessary
parameters and did not resolve test errors, then use the following method:

1. Use one of two techniques of locating dynamic request values:

a. comparing recorded and replayed session.

b. comparing two record sessions.

2. Create necessary variables to parameterize dynamic values:

a. for every dynamic value originated on the server, create an extractor.

b. for every dynamic value originated on the client, or entered by a user, create a data set,
a generator or a function.

3. Create missing parameters, as described in the Parameterization section.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 147

Comparing Recorded and Replayed Sessions

To display Compare Sessions Inspector,
select a session, click Compare (a) on the
toolbar or in the sessions' context menu (b) or
double-click the session. The Compare
Sessions Inspector will open in the new tab
(c). You can select from the several of views
by clicking an appropriate tab. Every view
shows a split screen displaying:

 recorded session content on the pane left
(d)

 replayed session content on the pane right
(e)

The content is automatically compared. All
differences are highlighted as follows:

 in the recorded pane (on the left) in green
(f)

 in the replayed pane (on the right) in
orange (g)

The following views are available:

1. Raw request. Displays an unformulated
request content.

o Recorded and replayed line are
numbered and auto aligned.

o Lines with discrepancies are
colored.

o Characters with discrepancies are
displayed in bold (h).

2. Response. Displays an unformulated
response content.

o Recorded and replayed line are
numbered and auto aligned.

o Left and right panes can be auto-
scrolled vertically.

o Line numbering on very large

BUILDING TEST CASE

sessions is disabled by default for
performance, It can be manually re
enabled by checking the box.

o Lines with discrepancies are
colored.

o Characters with discrepancies are
displayed in bold.

o To show or hide line number, click

or .

o To split the screen 1:1, click

o To display replayed session

information click

The following
information will be
displayed:

 VU number

 Iteration
number

 Request
issuing time
from the test
start

 Response
receiving time
from the test
start

3. Header. Displays request headers in the
name / value pair format

o

 Recorded and replayed
headers are displayed in
two aligned grids (i).

 Lines with discrepancies are
colored (j).

4. Query. Displays only if the request has a

BUILDING TEST CASE - PARAMETERIZING DYNAM

sessions is disabled by default for
performance, It can be manually re-
enabled by checking the box.

Lines with discrepancies are

Characters with discrepancies are

To show or hide line number, click

To split the screen 1:1, click .

To display replayed session

Displays request headers in the

Recorded and replayed
headers are displayed in
two aligned grids (i).

Lines with discrepancies are
colored (j).

if the request has a

User Guide v1

PARAMETERIZING DYNAMIC TESTS 148

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 149

query string in the name / value pair format

o

 Recorded and replayed
query string are displayed in
two aligned grids

 Lines with discrepancies are
colored.

5. Web Form. Displays only if the request is
a web form.

o

 Recorded and replayed web
forms are displayed in two
aligned grids.

 Lines with discrepancies are
colored.

In all of the views, both panes are
independently searchable using the Find
boxes on the toolbar (k).

6. Web View. Compare screenshots captured
during records and verify. This helps to
quickly pinpoint the differences or view errors.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 150

Comparing Two Recorded Sessions

Another way to find missing parameters is to re-record the same scenario again and compare the
two recordings to identify dynamic values. It consists of the following steps:

1. After running verify, in the Verification tree, right-click on the error/warning session in the original
test case and select Compare Recorded option.

2. In the Select a Session to Compare window, click Record New... (a) to re-record the identical
test scenario for comparison. The recording wizard will appear to take you through the steps of re-
recording. This will create a test case that can be deleted after the correlation process is complete.
Therefore you don't need to annotate transactions. The recording wizard will automatically give a
suggested test case name <Current Test Case> - Compare. The default mix weight for this test
case will be set to 0, so it will not be executed during the test run. Once recording is complete, the
verify tree should still be open, go back to Step 1 of the process above and then proceed to Step 3.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 151

3. If the test case was already recorded twice, then StresStimulus will automatically find a matching
test case and matching session. The matching test case will be selected in the Test Case drop-
down as <Current Test Case> - Compare (b). The corresponding session (c) will also be
selected. While test cases recorded twice are similar, they are not identical. Therefore the session
number will not necessarily match, but the session content will. If the session is not selected, select
it manually. Then click OK (d).

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 152

4. The Compare Session inspector will open in a separate tab. The original session will be on the
left, secondary session will be on the right. Compare the two recorded requests, and pay attention
to the differences. Usually, these differences point out the dynamic parameters that need to be
created. To quickly traverse through the differences, repeatedly click Highlight the Next
Difference (e) on the toolbar. In the example shown in the screenshot above, the first value of the
parameter openFormIds was recorded as 40F (f). The second time the same value was recorded
as A59 (g). This is an indication that this parameter is dynamic. There are three possibilities:

 the dynamic value should be correlated

 the dynamic value is already auto-correlated

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 153

 the dynamic value should be parameterized, unless you've already parameterized it.

5. Select the green text on the left and click the Find the highlighted text in the previous
responses button (h). Alternatively, right click and select the same item on the context menu. The
responses that contain the selected value should be highlighted in the test case tree. If no
responses are highlighted, then the dynamic value was originated on the client and should be
parameterized. Otherwise, create the appropriate extractor for the highlighted value (i) (if one
doesn't already exist). Right-click and select Create Response Extractor (j).

6. Create Extractor dialog will appear with the dynamic value highlighted (k). Continue creating the
extractor as described in the Extractors section.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 154

7. To create the parameter, go back to the the Compare Session inspector, select the dynamic
value (f) and click the Parameterize the selected value button (l) on the toolbar. A Create
Parameter dialog with the pre-selected value (m) will open. Right-click, and from the Variable
Picker, select the extractor (n) created in step 6.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 155

Highlighting Non-Correlated Dynamic Values

After re-recording the same scenario, highlighting non-correlated dynamic values is another useful
feature. This feature highlights the possible values that might need correlation by comparing the re-
recorded scenario with the verified test case.

1. After running verify, in the Verification tree, right-click on the error/warning session in the original
test case and select Highlight non-correlated dynamic values...

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 156

2. In the Select a Session to Compare window, click Record New... (a) to re-record the identical
test scenario for comparison. The recording wizard will appear to take you through the steps of re-
recording. This will create a temporary test case that can be deleted after the correlation process is
complete. Therefore you don't need to annotate transactions. The recording wizard will
automatically give a suggested test case name <Current Test Case> - Compare . Once recording
is complete, the verify tree should still be open. Go back to Step 1 of the process above and then
proceed to Step 3.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 157

3. If the identical test scenario for comparison is already recorded, then it will be selected in the
Test Case drop-down as <Current Test Case> - Compare (b). StresStimulus will try to
automatically select the corresponding session (c). The session number will not necessarily match,
but the session content will. If the session is not selected, select it manually. Then click OK (d).

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 158

4. The Highlighting non-correlated dynamic values inspector will open in a separate tab. The
highlighted text points out the dynamic parameters that need to be created. To quickly traverse
through the differences, repeatedly click Highlight the Next Difference (e) on the toolbar. In the
example shown in the screenshot above, the first value of the parameter openFormIds, recorded
as 40F (f), should be parameterized.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 159

5. Select the green text on the left and click the Find the highlighted text in the previous
responses button (h). Alternatively, right click and select the same item in the context menu. The
responses that contain the selected value will be highlighted in the test case tree (i). If no
responses are highlighted, then the dynamic value was originated on the client and should be
parameterized. Otherwise, create the appropriate extractor for the highlighted value (i) (if one
doesn't already exist). Right-click and select Create Response Extractor (j).

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 160

6. Create Extractor dialog will appear with the dynamic value highlighted (k). Continue creating the
extractor as described in the Extractors section.

7. To create the parameter, go back to the the Compare Session inspector, select the dynamic
value (f) and click the Parameterize the selected value button (l) on the toolbar. A Create
Parameter dialog with the pre-selected value (m) will open. Right-click, and from the Variable
Picker, select the extractor (n) created in step 6.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 161

4.4.3.4 Inspecting Sessions

Sometimes it is necessary to inspect or modify
a recorded or replayed session by itself.
Session Iinspector is a tool for browsing and
editing session content.

There are several ways to open Session
Inspector,

 double-click Recorded or Replayed
session in the verification tree.

 double-click Recorded session in the Test
Case tree.

 double-click a session bar in the Waterfall.

A new tab with the following information will
open:

1. The request is displayed on the top.

BUILDING TEST CASE

2. The response is displayed on the bottom.

3. The recorded and replayed session
inspectors are marked accordingly. Replayed
session display VU number, iteration and a
test case associated was the replayed
session.

4. You can search the request and the
response independently using the Find boxes.

5. To edit the session, click Unlock for
Editing.

6. To save changes, click Save.

7. To quickly auto size the request and
response panes, use resize buttons:

o

 Split the window at 1/4

 Split the window at 1/2

 Split the window at 3/4

Note: In order to open Session
Inspector, session content must be
saved in storage accessible from the
controller. This information is available in
tests that ran from the controller without
agents . In distributed tests
Server is used as storage, this
information is also available on the
controller as well. However, in
distributed tests with SQL Server CE
based storage, the sessions initiated on
the agents are stored on the agents.
You still can open such sessions in the
Session Inspector, if Save sessions
from agents property in Configure Test
-> Test Result Storage section is set to
Yes (default), because this setting will
force replicating minimum
data from the agents to the controller.

8. During test run, a significant amount of

BUILDING TEST CASE - PARAMETERIZING DYNAM

2. The response is displayed on the bottom.

replayed session
inspectors are marked accordingly. Replayed
session display VU number, iteration and a
test case associated was the replayed

4. You can search the request and the
response independently using the Find boxes.

Unlock for

Save.

7. To quickly auto size the request and
response panes, use resize buttons:

Split the window at 1/4

Split the window at 1/2

Split the window at 3/4

Session
Inspector, session content must be
saved in storage accessible from the
controller. This information is available in
tests that ran from the controller without

distributed tests , when SQL
, this

information is also available on the
controller as well. However, in
distributed tests with SQL Server CE-
based storage, the sessions initiated on

gents are stored on the agents.
You still can open such sessions in the

Save sessions
Configure Test
section is set to

(default), because this setting will
force replicating minimum necessary
data from the agents to the controller.

8. During test run, a significant amount of

User Guide v1

PARAMETERIZING DYNAMIC TESTS 162

BUILDING TEST CASE

performance information collected on agents.
Only part of this data, which is most important
for consolidated reports, is mirrored to the
controller. Some of the data is exclusively
stored on the agent. For example, if the
session was initiated on the agent and is
opened on the controller, its response will
display some session metadata, such as host,
URL, and response code. However, detailed
response body information will not be
presented. Instead directions will be provided
to access complete request and response
content on the agent by Opening an SQL CE
file on the agent.

The request and response inspectors have the
following views:

 Text View: Shows the request/response
headers and body as text.

 Hex View: Shows the request/response
headers and body in hexadecimal format.
This is especially helpful when the content
of the session is binary.

 Web View: Shows the how the response
will look in the browser (only in the
response inspector)

4.4.3.5 Session Timers

Each session has a list of timers and time
Show session timers button in the inspector toolbar.

The timers dialog will pop-up and show the following info:

BUILDING TEST CASE - PARAMETERIZING DYNAM

performance information collected on agents.
Only part of this data, which is most important
for consolidated reports, is mirrored to the

the data is exclusively
stored on the agent. For example, if the
session was initiated on the agent and is
opened on the controller, its response will
display some session metadata, such as host,
URL, and response code. However, detailed

ormation will not be
presented. Instead directions will be provided
to access complete request and response

Opening an SQL CE

The request and response inspectors have the

Text View: Shows the request/response
headers and body as text.

Hex View: Shows the request/response
headers and body in hexadecimal format.
This is especially helpful when the content

Web View: Shows the how the response
will look in the browser (only in the

Session Timers

Each session has a list of timers and time-stamps of multiple events. To access them, click the
button in the inspector toolbar.

up and show the following info:

User Guide v1

PARAMETERIZING DYNAMIC TESTS 163

stamps of multiple events. To access them, click the

BUILDING TEST CASE

Browser Start Sending
Request

StresStimulus Got Request

DNS Lookup Time

Server Connection Time

HTTPS Handshake Time

StresStimulus Start Request
To Server

Server Got Request

Server Begin Response

Server End Response

StresStimulus Start Response
To Browser

StresStimulus End Response
To Browser

Total Time

BUILDING TEST CASE - PARAMETERIZING DYNAM

Time when the browser initiate the request. (This can be ignored
for replayed sessions.)

Time when the StresStimulus received the request.

Number of ms to for DNS lookup-up.

Number of ms to connect to the server.

Number of ms to perform an HTTPS handshake.

StresStimulus Start Request Time when StresStimulus initates request to the server.

Time when server received the request.

Time when server initates response to StresStimulus.

Time when StresStimulus received the response.

StresStimulus Start Response Time when StresStimulus initates response to the browser. (This
can be ignored for replayed sessions.)

StresStimulus End Response Time when browser received the response. (This can be ignored
for replayed sessions.)

Number of seconds the entire operation took.

User Guide v1

PARAMETERIZING DYNAMIC TESTS 164

Time when the browser initiate the request. (This can be ignored

the StresStimulus received the request.

Number of ms to perform an HTTPS handshake.

Time when StresStimulus initates request to the server.

Time when server initates response to StresStimulus.

response.

Time when StresStimulus initates response to the browser. (This

Time when browser received the response. (This can be ignored

Number of seconds the entire operation took.

User Guide v1

BUILDING TEST CASE - PARAMETERIZING DYNAMIC TESTS 165

4.4.3.6 Extractor Verification and Script Optimization

After Verify is completed, the tree in the Extractor Verification tab will show extractors' values. Next
to every extractor, there is a status image showing whether an exception in handling the extractor
was encountered. One of 4 statuses can be assigned to an extractor:

a. The extractor is OK.

b. The extractor is not found in the response.

c. The extractor's value is not used in the Test Case.

d. The recorded and replayed extractors are the same.

The status (e) is displayed when mouse over the extractor

The autocorrelation process creates extractors and parameters to avoid test execution errors.
However, some of these parameters may be unnecessary. If the test machine is overloaded, you
can reduce performance overhead by deleting unnecessary parameters. The extractors with
statuses b, c and d are automatically selected for easy removal. To delete them, click Delete (f) on
the toolbar.

To search the Extractor Verification tree use search control (g).

The value returned by a selected extractor is displayed in the property grid (h)

User Guide v1

BUILDING TEST CASE - TEST CASE OBJECT PROPERTIES 166

4.5 Test Case object properties

4.5.1 Test Case: Think Time

A physical user typically spends some time on each page to analyze the displayed information or
enter data. The delay between opening a page and navigating to a subsequent page is called think
time. Think time is an important factor in realistic load tests. You can customize page think times to
emulate different users’ iteration for a more realistic load test. The following think time mode
options are supported.

Think
Time
Mode

Description

Zero No think time is used. This is
generally not recommended for
load tests because it results in an
abnormally high load on the
tested website. Use this option
when a maximum load is required
in stress tests.

Page-
level

The think time specified in each
page will be used. The default
value is the recorded think time.
When recording a test case,
StresStimulus registers the time
you spent on web pages and
saves it in the page Think Time
property. You can modify this
property before running a test. To
do so, in the Pages Settings tree
node select a page and make a
change in its property grid.

Constant A constant think time will be used.
Another property will appear
called Think Time (s) where you
can specify a fixed value.

Random When any of the previous options
is selected, all VUs will exercise
the same think time for pages.

User Guide v1

BUILDING TEST CASE - TEST CASE OBJECT PROPERTIES 167

This never happens in real life. To
make the test more realistic, use
randomized think time for pages.
When this option is selected, a
random value in a given range will
be used. Two properties will
appear called Min Think Time (s)
and Max Think Time (s) in which
you can specify the think time
range.

The think time is a delay inserted before
requesting a subsequent page. The
think time will not be applied after the
last page in the test case because there
is no subsequent page. If you need to
inject a delay after the last page before
starting a new iteration, use Delay after
the Test Case instead.

Note: The default think time setting is
constant at 2 seconds.

Think time is not included in the page
response time. However, higher think time
slows down the client request rate, which
results in a lower server load. Increasing think
time will typically decrease the request rate
and will allow the server to handle more virtual
users.

4.5.2 Delay after the Test Case

Typically during test run, the test case is replayed multiple times. A single replay of the test case by
a single VU is called test iteration.

You can set a delay between iterations in using Delay after the Test Case property. The following
options are available:

User Guide v1

BUILDING TEST CASE - TEST CASE OBJECT PROPERTIES 168

Options Description

Zero There is no delay. The next
iteration or test case will start as
soon as the previous one is
complete.

Constant There is a constant delay. The
next iteration or test case will start
after a constant time period
elapsed.

Another property will appear called
Constant delay (s) where you can
specify the delay value.

Pacing This selection ensures that the
execution time of a test case is
equal or exceeds a given minimum
duration. If necessary, a delay is
automatically added to meet that
requirement. Then the next
iteration or next test case will start
after a minimum duration has
elapsed. Another property will
appear called Minimum Iteration
duration(s) where you can specify
the delay value.

When the test cases are executed sequentially, they are combined in the test case groups. Delay
after the Test Case property is used to set the wait time between the test case executions in the
group.

4.5.3 Test Case: Caching Rules

HTTP caching is one of the most important mechanisms of increasing website performance. It
allows to substantially reduce bandwidth and offload the server from sending resources cached on
the client. Users with empty cache and users with primed cache impact the Web servers load
differently. While HTTP caching is an essential factor impacting server load, it is frequently
overlooked in load testing.

StresStimulus provides a comprehensive mechanism of emulating the browser caching factor. The
Cache Control property allows to configure a mix of virtual users with different browsing history
(cache) management. Every VU can either have cache enabled or disabled.

 A VU with disabled browser cache will send all recorded requests on all iterations without any
HTTP caching headers. For every request, the server is expected to send a full response.

User Guide v1

BUILDING TEST CASE - TEST CASE OBJECT PROPERTIES 169

 A VU with enabled browser cache will send requests based on the caching rules. These rules
are determined for every request after recording a test case and can be changed as described
below.

There are 2 flavors of a VU with enabled
cache: new user and returning user.

 New users emulate a VU with browser
cache enabled, but empty (like visiting a
site for the first time). Such users behave
differently on the first and subsequent
iterations:

 In the first iteration caching rules are
ignored and all requests are unconditionally
sent without HTTP caching headers (like a
VU with disabled cache),

 In all subsequent iterations, the HTTP
caching rules are used.

 Returning users emulate a VU with primed
browser cache and will follow the caching
rules on all iterations.

Note: The caching rules are determined by the server's recorded response headers. For
information about browser caching rules, see RFC 2616, Caching in HTTP.

Disabling the cache control will render all VUs with disabled browser caches. Enabling the browser
cache will render all VUs with enabled browser caches. In this case the New VU % property will
appear. It is used to emulate the proportion of new vs. returning users. Cache control properties are
summarized in the table below:

Property Value Description

Cache
Control

Disabled Every VU will not emulate browser cache capabilities. Every
request will be sent, and every request will have recorded caching
headers removed.

Cache
Control

Enabled Every VU will emulate browser cache capabilities. Every VU can
emulate storing resources in the browser cache for further
subsequent iterations.

See below for further options.

BUILDING TEST C

Property Value

New VU% A number
between 0 and
100%

Note: Cache properties described in this section are not available on the Test Case level if
Test Case Groups are used. In this case, these properties are available in the Test Case
Group section (see Sequential Test Case Groups

4.5.4 Test Case: Session Persistence

A physical browser that accesses a website maintain
closed. After the browser is restarted and navigated to the same website, a new application session
will be established. A website session is controlled by one (or more) HTTP session cookies, so a
new session means a new value of the cookie. In StresStimulus, a VU can either restart a browser
on every iteration (the session cookie will change on every iteration), or leave the browser open
across all iterations (the session cookie will stay the same on every iter
persistence across all iterations can be useful when a test case has a login process that needs to
be done only on the first iteration and not on subsequent iterations.

Here are two examples:

 Internal users are signing in to the
while navigating through the scenario many times throughout the day. The server renders a
session cookie on the first iteration, and StresStimulus will reuse it in subsequent iterations. A
login is not required in subsequent iterations.

 On the contrary, external users who use the application occasionally are signing in every time
when they need to navigate through a scenario. A new session cookie is assigned in every
iteration. A login is most likely

StresStimulus can emulate a user base that
includes both of these user types. Use the
VUs restarting the browser %
percentage of VUs that will be restarting the
browser on every iteration and change the
session. The rest will keep their browsers
open and have their session persist across all
iterations. For example, a value of 0 for
restarting the browser % will render session
persistence for all VUs across all iterations; a
value of 80 will disable session persistence
across iterations for 80% of VUs and enable it
for 20% of VUs.

BUILDING TEST CASE - TEST CASE OBJECT PRO

Description

The percent of VUs that will be new with cache enabled. The rest
will be returning with cache enabled. This setting is only available
with Cache Control enabled.

Cache properties described in this section are not available on the Test Case level if
st Case Groups are used. In this case, these properties are available in the Test Case

Sequential Test Case Groups).

Test Case: Session Persistence

A physical browser that accesses a website maintains application session persistence until it is
closed. After the browser is restarted and navigated to the same website, a new application session
will be established. A website session is controlled by one (or more) HTTP session cookies, so a

eans a new value of the cookie. In StresStimulus, a VU can either restart a browser
on every iteration (the session cookie will change on every iteration), or leave the browser open
across all iterations (the session cookie will stay the same on every iteration). Maintaining session
persistence across all iterations can be useful when a test case has a login process that needs to
be done only on the first iteration and not on subsequent iterations.

Internal users are signing in to the application in the morning and maintain the same session
while navigating through the scenario many times throughout the day. The server renders a
session cookie on the first iteration, and StresStimulus will reuse it in subsequent iterations. A

not required in subsequent iterations.

On the contrary, external users who use the application occasionally are signing in every time
when they need to navigate through a scenario. A new session cookie is assigned in every
iteration. A login is most likely required in every iteration as well.

StresStimulus can emulate a user base that
includes both of these user types. Use the
VUs restarting the browser % to set the
percentage of VUs that will be restarting the
browser on every iteration and change the

ion. The rest will keep their browsers
open and have their session persist across all
iterations. For example, a value of 0 for VUs

will render session
persistence for all VUs across all iterations; a

on persistence
across iterations for 80% of VUs and enable it

User Guide v1

TEST CASE OBJECT PROPERTIES 170

percent of VUs that will be new with cache enabled. The rest
will be returning with cache enabled. This setting is only available

Cache properties described in this section are not available on the Test Case level if
st Case Groups are used. In this case, these properties are available in the Test Case

s application session persistence until it is
closed. After the browser is restarted and navigated to the same website, a new application session
will be established. A website session is controlled by one (or more) HTTP session cookies, so a

eans a new value of the cookie. In StresStimulus, a VU can either restart a browser
on every iteration (the session cookie will change on every iteration), or leave the browser open

ation). Maintaining session
persistence across all iterations can be useful when a test case has a login process that needs to

application in the morning and maintain the same session
while navigating through the scenario many times throughout the day. The server renders a
session cookie on the first iteration, and StresStimulus will reuse it in subsequent iterations. A

On the contrary, external users who use the application occasionally are signing in every time
when they need to navigate through a scenario. A new session cookie is assigned in every

User Guide v1

BUILDING TEST CASE - TEST CASE OBJECT PROPERTIES 171

Note: Session persistence within an iteration is always maintained.

4.5.5 Page Properties

Some of the page properties are described in the next several sections.

Info: All page properties are displayed in the property grid. You can modify any property
which is not grayed out.

The full list of page properties, toolbar commands and context menu options is provided in
the User Interface Reference -> Test Case Tree -> Page.

4.5.5.1 Think Time

Configuration of the think time in the Test Case is
described in Test Case: Think Time. The page's
Think Time displays an actual time interval in
seconds. This is the wait time that will be used
after the page is complete if you set Think Time
Mode to Page-level in the Test Case.

Note: After recording a Test Case it displays
the recorded think time, which is the delay
between the completion of the current page
and the requesting of the subsequent page
during recording. After recording you can
change this property.

4.5.5.2 Page Goal

A page goal is the expected maximum time for all the responses in a page to come back. If the
page's actual response time in one of the test iterations exceeds the goal, then the page's Missed
the Goal counter is incremented. After the test is complete, the percentage of the page requests

User Guide v1

BUILDING TEST CASE - TEST CASE OBJECT PROPERTIES 172

that missed the goal is reported in the Missed Goal % column in the Page Details section. Also,
Goal and/or Missed Goal curves will be plotted on the graphs in the Page Result tab.

To set or change the page goal use the
following information:

1. Default goal

 The initial Default Goal value is set to 4
seconds for all pages.

 If you change the test case Default Goal
(s) property then the goal of every page for
which the Goal (s) property was not
modified, will be equal to the new default
goal.

 To remove the goal in all pages with default
goal, leave the Default Goal (s) value
empty.

2. Individual page goal. To override the page
default goal value, change the Goal(s)
property in the property grid.

It is recommended to select the goal relevant
to your application quality of service
requirements.

4.5.5.3 Page Timeout

Timeout is the maximum amount of time for receiving any of the page responses. Like in physical
browsers, a virtual user will stop sending new requests after the number of its pending requests
reaches a certain browser-specific limit. The VU will resume sending requests only after some
responses are received, so the number of open connections does not exceed the limit. If the server
will stop responding, the load test will halt. To avoid this situation, StresStimulus has a timeout
mechanism allowing the Tests with very slow responses to complete faster. Any request which
does not receive a response after the timeout, will be aborted and marked as a Timeout, so the
load test can continue without waiting such very slow responses. All timeout occurrences are
reported in the test error log. The timeout sessions are excluded from response time calculations.

User Guide v1

BUILDING TEST CASE - TEST CASE OBJECT PROPERTIES 173

To set or change page timeout use the
following information:

1. Default timeout

 The initial default timeout value is 60
seconds for all pages.

 If you change the test case Default
Timeout(s) property (a) then the timeout
of every page for which the timeout (s)
property was not modified, will be equal to
the new default timeout.

2. Individual page timeout. To override the
page default timeout value, change its
Timeout(s) property in the property grid. The
new value will set the timeout of every request
in this page. You can further change the
individual requests timeout as described in the
Request properties.

Note: You can disable Timeouts for certain test cases. To do so, in the test case property
grid, change the Request Timeout property to Disabled. Use Disabled for determining
response times of slow requests. However, this may cause long or indefinite wait times during
the test run.

4.5.5.4 When to Request the Page

Sometimes in tests executing multiple iterations, it is desirable to request a page only once, in the
beginning or at the end, to perform initial or final actions. For instance, in a test case, a user logs in,
performs some actions, and logs out. During the test run, you want every VU to login only on the
first iteration and logout only on the last iteration, while other pages should be repeated multiple
times.

Use the When to Request the Page property to configure such tests. Set this property to On 1-st
Iteration on the login page and to On Last iteration on the logout page.

BUILDING TEST CASE

The table below shows how to use this property.

When to
Request the
Page

Properties

In All iterations (Default) The page and all its requests
will be sent in all VU's iterations.

In 1-st iteration The page and all its requests will be
sent only in the first iteration. This is
used for a log

In Last
iteration

The page and all its requests will be
sent only in the last iteration. This is
used for a log

Note:

 Actions executed on the 1
throughout the entire test. For example, the log
session ID that should persist throughout the test. To satisfy this req
Control and set the VU restarting browsers % to 0. For more information see
Caching Rules and Test Case: Session Persistence

 If you are running the log-out process on the last iteration only (as in the example above)
your test must set Test Completion Criteria

4.5.6 Request Properties

During recording, StresStimulus automatically takes screenshots of the webpage on every click.
Each screenshot is associated with a primary request, page or transaction issued immediately
before the click. It is stored within a corresponding page object.

The screenshots are displayed when you select the request on the Test Case tree. They
remember what was displayed in the browser when the web page was recorded. Screenshots are
only available for sessions representing an HTML page. The screensho
page property grid. You can disable taking screenshot by un

BUILDING TEST CASE - TEST CASE OBJECT PRO

The table below shows how to use this property.

Properties

(Default) The page and all its requests
will be sent in all VU's iterations.

The page and all its requests will be
sent only in the first iteration. This is
used for a log-in type page.

The page and all its requests will be
sent only in the last iteration. This is
used for a log-out type page.

Actions executed on the 1st iteration, create certain state that must be carried over
throughout the entire test. For example, the log-in process on the 1st iteration generates a
session ID that should persist throughout the test. To satisfy this requirement, enable Cache
Control and set the VU restarting browsers % to 0. For more information see

Test Case: Session Persistence.

out process on the last iteration only (as in the example above)
Test Completion Criteria to Number of iterations.

Request Properties

During recording, StresStimulus automatically takes screenshots of the webpage on every click.
Each screenshot is associated with a primary request, page or transaction issued immediately

stored within a corresponding page object.

The screenshots are displayed when you select the request on the Test Case tree. They
remember what was displayed in the browser when the web page was recorded. Screenshots are
only available for sessions representing an HTML page. The screenshots are displayed below the

You can disable taking screenshot by un-checking the box

User Guide v1

TEST CASE OBJECT PROPERTIES 174

iteration, create certain state that must be carried over
iteration generates a

uirement, enable Cache
Control and set the VU restarting browsers % to 0. For more information see Test Case:

out process on the last iteration only (as in the example above)
Number of iterations.

During recording, StresStimulus automatically takes screenshots of the webpage on every click.
Each screenshot is associated with a primary request, page or transaction issued immediately

The screenshots are displayed when you select the request on the Test Case tree. They help users
remember what was displayed in the browser when the web page was recorded. Screenshots are

ts are displayed below the
checking the box Take screenshot of

User Guide v1

BUILDING TEST CASE - TEST CASE OBJECT PROPERTIES 175

pages as described in Recording Test Case. You can copy the screenshot to clipboard or delete it
by right-clicking the image.

Note: StresStimulus tries to capture how the browser window looked just before the click.
Sometimes when the page refreshes too quickly or the system is a bit slow, StresStimulus
can miss the right moment for a screenshot, so they may not come out well or will miss
altogether.

Some of the request properties are described in this section.

Info: The full list of request properties, toolbar commands and context menu options is
provided in the User Interface Reference -> Test Case Tree.

BUILDING TEST CASE

Timeout

Request Timeouts - the maximum amount of time
for receiving the request. Initially, the timeout of
every page's request is equal to the timeout
property set on the pages (see
You can override the request
property grid.

Info: Because responses for the timed out
sessions are not received in time, they
cannot be stored in the test log.
inspector will display the message
"StresStimulus timeout" in place of the
response content when you
with a timeout.

Caching Rules

Caching emulation in StresStimulus is described
in Test Case: Caching Rules
recorded caching behavior that is a result of the
server's response headers. This information is
stored in the request's Caching Rules
You can view or change this property on the
request property grid. This property only perta
to test cases with Cache Control
Caching Rules property is summarized in the
table below.

Caching
Rules

Properties

Normal All recorded caching headers will be
sent. A possible 304 Response can
come if the resource has not
changed.

Not
Cached

All recorded caching headers are
stripped off and the request is sent.
Expect a 200 response.

BUILDING TEST CASE - TEST CASE OBJECT PRO

the maximum amount of time
for receiving the request. Initially, the timeout of
every page's request is equal to the timeout
property set on the pages (see Page Timeout).
You can override the request timeout on its

Because responses for the timed out
sessions are not received in time, they
cannot be stored in the test log. Session
inspector will display the message
"StresStimulus timeout" in place of the
response content when you open a session

Caching emulation in StresStimulus is described
Test Case: Caching Rules. Every request has

recorded caching behavior that is a result of the
server's response headers. This information is

Caching Rules property.
You can view or change this property on the
request property grid. This property only pertains

Cache Control enabled. The
property is summarized in the

All recorded caching headers will be
sent. A possible 304 Response can
come if the resource has not

All recorded caching headers are
stripped off and the request is sent.
Expect a 200 response.

User Guide v1

TEST CASE OBJECT PROPERTIES 176

User Guide v1

BUILDING TEST CASE - TEST CASE OBJECT PROPERTIES 177

Cached This request will not be sent
because it is cached.

Note: If the URL of a request is
parameterized, then caching for such
requests is automatically disabled
regardless of user settings. This helps to
avoid the mistake of caching requests with
dynamic URLs.

Editing Sessions

You can edit recorded sessions in the test case.
To do so, in the test case tree, double-click the
session (a), and in the appeared in a new Tab (b)
session inspector, check “unlock for editing” (c).
After that you can make changes in the session
request (d)and response (e). When finished, click
Save (f)

User Guide v1

BUILDING TEST CASE - OTHER TEST CASE ELEMENTS 178

4.6 Other Test Case Elements

4.6.1 Authentication

StresStimulus supports all major authentication methods. They are divided into two types: server
authentication and application authentication.

User Guide v1

BUILDING TEST CASE - OTHER TEST CASE ELEMENTS 179

Server Authentication

Server authentication refers to any machine,
operating system or domain level
authentication. It includes Basic, Windows
Integrated (e.g. NTLM) or other Kerberos
authentication.

To configure server authentication, provide a
set of the credentials that the tested website
recognizes, and use the Authentication node
in the Workflow Tree to enter the provided
credentials. You can also paste data (from
Excel) into the authentication grid. The
Domain field might be optional depending on
your server. You can also import credentials
stored in a .csv file by clicking Import on the
toolbar. The .csv file must have 3 grid columns
and no header.

Note 1: If you are located in the
Authentication section and need to
configure form authentication or any
other type of application authentication,
described below, click Go to Forms
Authentication on the toolbar.

Note 2: Every new VU will use a
subsequent set of credentials. If the
number of VUs exceeds the number of
credentials, then they are assigned
using a round robin algorithm. For
example, if you have 10 rows in the
Authentication grid and emulate 20 VUs,
then VU1 and VU11 will use row 1, VU2
and VU12 will use row 2, and so on.

User Guide v1

BUILDING TEST CASE - OTHER TEST CASE ELEMENTS 180

Authentication is configured per Test.
Credentials created in one test case are used
in all test cases

Some web applications use several hosts
which require different credentials for
authentication. In order to support such
authentication schema, you need to enable
host specific credentials. To do so, check the
Host-specific Credentials box (a). The Host
column (b) appears in the authentication grid.
For every set of credentials enter a host to
which the credentials will be submitted.

Application Authentication

Application level authentication refers to the
authentication method that takes place inside
the web application (e.g. Form authentication).
The test case will store the set of credentials
entered during recording. By default, these
credentials will be used for all VUs. To test
VUs with different credentials, you need to:

 Provide a set of the credential that the
tested website recognizes.

 Create a dataset, populate it with the
provided credentials, and parameterize the
appropriate request as described below:

1. In the Datasets section, click Create
Authentication Dataset on the toolbar. The
Credentials dataset will be created. If your
authentication process includes additional
properties, such as security questions, you
can edit the Credentials dataset structure by
adding additional fields (see Datasets).

2. Populate the authentication dataset by
entering data, pasting data (from Excel) or
importing a .csv file.

3. Find the login request in the test case (it is
usually one of the first POST requests). To do
so:

a. Click Find Session by Content or hit
<Crl+F>

User Guide v1

BUILDING TEST CASE - OTHER TEST CASE ELEMENTS 181

b. Enter one of the credentials you used in
recording (e.g. a username, email address or
password).

c. The first highlighted session is a login
request. Select it.

Tip: If you cannot find a request recorded with credentials, it is likely that your application
uses server authentication (see above).

4. Parameterize the Credential parameters using the Credentials dataset. Use the VU-Bound
databinding method.

Tip: Typically credentials are submitted in web form. In this case they will appear in the
parameterization grid in the Body tab.

Note: The Credentials are distributed between VUs using a round robin algorithm.

4.6.2 Transactions

A transaction is a set of sequential requests representing a meaningful step in a test scenario. It is
used to track performance characteristics of time
several user actions. Transactions add another level of performance tracking in addition to requests
and pages.

You can define transactions while recording a test case, as described in the
section, or after the test case is created.

To define a transaction after the test case is
created:

1. Go to the Build Test Case
2. Select the starting page or top level request.
3. Click Create a Transaction
transaction dialog will appear.
4. Select the last request in the transaction.
5. Give it a meaningful name and description
(optional).
6. Click Create Transaction

Transaction Goal (a) property is a transaction
completion time limit. Transactions which
missed the goal are reported in the
Results -> Transaction Details
Transaction goal is not set by default.

Transaction Think Time (b) is a delay added
at the end of the transaction to simulate the
user’s wait time before requesting the
subsequent page. Transaction think time is not
set by default.

BUILDING TEST CASE - OTHER TEST CASE ELEM

The Credentials are distributed between VUs using a round robin algorithm.

Transactions

A transaction is a set of sequential requests representing a meaningful step in a test scenario. It is
used to track performance characteristics of time-critical business transactions consisting of
several user actions. Transactions add another level of performance tracking in addition to requests

You can define transactions while recording a test case, as described in the
section, or after the test case is created.

To define a transaction after the test case is

Build Test Case node.
2. Select the starting page or top level request.

Create a Transaction. A new
tion dialog will appear.

4. Select the last request in the transaction.
5. Give it a meaningful name and description

Create Transaction.

(a) property is a transaction
completion time limit. Transactions which

he goal are reported in the Test
> Transaction Details section.

Transaction goal is not set by default.

(b) is a delay added
at the end of the transaction to simulate the
user’s wait time before requesting the
subsequent page. Transaction think time is not

User Guide v1

OTHER TEST CASE ELEMENTS 182

The Credentials are distributed between VUs using a round robin algorithm.

A transaction is a set of sequential requests representing a meaningful step in a test scenario. It is
usiness transactions consisting of

several user actions. Transactions add another level of performance tracking in addition to requests

You can define transactions while recording a test case, as described in the Creating Transactions

User Guide v1

BUILDING TEST CASE - OTHER TEST CASE ELEMENTS 183

Note: After the test is complete,
transaction performance metrics are
located in Transaction Details section
under the test results.

Note: Think time of a transaction and
think times of all children transactions are
excluded from the transaction response
time.

Info: The full list of Transaction properties,
toolbar commands and context menu
options is provided in User Interface
Reference -> Transactions & Loops.

4.6.3 Loops

A Loop will execute its child objects multiple
times within a test case iteration. Loops allow to
simplify recording test scenarios consisting of
repeated actions.

To create a loop, perform the following steps:

1. Go to the Build Test Case

2. Select the starting page, top level request, or
transaction

3. Open the Context Menu by right mouse
clicking.

4. Click Create Loop.

5. A new loop dialog will appear.

6. Select the last request or transaction in the
loop.

7. Give it a meaningful description (optional).

8. Click Create Loop. A basic loop will be
created.To change the loop definition, click
on the toolbar.

9. Re-open the Context Menu by right mouse
clicking and click Show Properties.

10. set the Number of Repeats
required number of loop iterations

11. Optionally, specify in the
Loop property, the number of seconds that will
be injected before starting the next loop cycle.

BUILDING TEST CASE - OTHER TEST CASE ELEM

A Loop will execute its child objects multiple
in a test case iteration. Loops allow to

simplify recording test scenarios consisting of

To create a loop, perform the following steps:

Test Case node.

2. Select the starting page, top level request, or

. Open the Context Menu by right mouse

5. A new loop dialog will appear.

6. Select the last request or transaction in the

7. Give it a meaningful description (optional).

. A basic loop will be
created.To change the loop definition, click Edit

open the Context Menu by right mouse
clicking and click Show Properties.

Number of Repeats property to the
required number of loop iterations

11. Optionally, specify in the Delay before next
property, the number of seconds that will

be injected before starting the next loop cycle.

User Guide v1

OTHER TEST CASE ELEMENTS 184

User Guide v1

BUILDING TEST CASE - OTHER TEST CASE ELEMENTS 185

4.6.4 Response Validators

StresStimulus automatically detects HTTP
errors by checking response status codes of
the emulated traffic. All responses with the
status code of 400 and above are listed as
errors in the Error Details report. However,
this level of verification is insufficient to track
down application-specific errors. For this
purpose, StresStimulus supports Validators
that allow to compare responses against some
expected values. Also, validators take
precedence over the HTTP errors to make
error reporting as granular as necessary. For
example, one custom validator will recognize
a database error message in response with
status code 500, and another one will
recognize a web server error message in
response with status code 500. As a result,
500 responses with database error, 500
responses with Web server error and 500
responses with other types of errors will be

User Guide v1

BUILDING TEST CASE - OTHER TEST CASE ELEMENTS 186

reported as 3 different error types.

A Validator is a rule of comparing a server’s
response with a text pattern. In the case of a
mismatch, a custom error is raised. You can
create validators for a single response (local),
or all responses (global). To create a new
validator:

1. Go to the Validators node on the
Workflow Tree

2. Click Create a new Validator. A new
validator dialog will appear.

3. Type the text or regular expression to
search for in the response. If it's a regular
expression then set the Is text a regular
expression? to Yes.

4. Change the Fail If setting if you want an
error to occur if the text is found. The value
Found is not available for global validators.
The default is Not Found.

5. The Scope setting allows to change the
validator from local to global.

6. Change the Action if Failed setting to
Abort Iteration to stop the current iteration,
mark it as failed, and start a new one in the
event the validation failed.

7. Click Add Validator when finished.

User Guide v1

BUILDING TEST CASE - OTHER TEST CASE ELEMENTS 187

Alternatively you can create a validator for a
recorded session by opening its session
inspector and clicking Create Validator (a) on
the toolbar.

Another convenient way of creating validators is
when comparing two sessions. In the Compare
Sessions Inspector, select the Response tab
and on the toolbar of the replayed window on
the right, click Create Validator (b).

Note: You can highlight text in the
replayed response before clicking the
Create Validator button and this text will
automatically populate the Text to search
field in the Create Validator dialog.

4.6.4.1 Validators and Failed Iterations, Pages and Transactions

Iteration, Page and Transaction Counters

StresStimulus keeps track of all started, (successfully) completed and failed iterations, pages and
transactions. These three counters are monitored and displayed in the real-time dashboard during
the test run and are reported in the test results.

After the test is complete, the following equation should be true for all iterations, pages and
transactions:

started = completed + failed

During the test run, this equation has the following form:

started = completed + failed + pending

How to Validate an Iteration

The iteration fails only when it contains a validator which fai
set to Stop Iteration.

If the iteration during execution encountered an HTTP error in one or several responses, this will
not cause the iteration to fail and it will continue its execution.

If you want a particular HTTP error to cause an iteration to fail, you need to define a validator
detecting this error, for example by checking the response status

If you want all HTTP error to cause any iteration to fail, you can define a validator with
property sets to Global. A single

If an iteration is marked as failed, it will be counted toward started and failed iterations. It will not be
counted toward passed or incomplete iterations. Performance metrics, such as
time for such iteration is excluded from the test metrics.

How to Validate a Page and Transaction

All Pages and Transactions that fully complete before a validator failed, are considered as started
and completed.

A Page or Transaction that contains the failed request with a validator is considered as started and
failed.

All Pages and Transactions that did not start as a result of the failed validator which stopped the
iteration are not considered as started.

If a page or transaction is marked as failed, its performance metrics, such as average response
time, is excluded from the test metrics.

4.6.5 If...Then

BUILDING TEST CASE - OTHER TEST CASE ELEM

The iteration fails only when it contains a validator which fails and has the property

If the iteration during execution encountered an HTTP error in one or several responses, this will
not cause the iteration to fail and it will continue its execution.

HTTP error to cause an iteration to fail, you need to define a validator
detecting this error, for example by checking the response status-code.

If you want all HTTP error to cause any iteration to fail, you can define a validator with
Global. A single global validator is capable to fail any iteration.

If an iteration is marked as failed, it will be counted toward started and failed iterations. It will not be
counted toward passed or incomplete iterations. Performance metrics, such as
time for such iteration is excluded from the test metrics.

How to Validate a Page and Transaction

All Pages and Transactions that fully complete before a validator failed, are considered as started

that contains the failed request with a validator is considered as started and

All Pages and Transactions that did not start as a result of the failed validator which stopped the
considered as started.

marked as failed, its performance metrics, such as average response
time, is excluded from the test metrics.

User Guide v1

OTHER TEST CASE ELEMENTS 188

ls and has the property Action if Failed

If the iteration during execution encountered an HTTP error in one or several responses, this will

HTTP error to cause an iteration to fail, you need to define a validator

If you want all HTTP error to cause any iteration to fail, you can define a validator with Scope
global validator is capable to fail any iteration.

If an iteration is marked as failed, it will be counted toward started and failed iterations. It will not be
counted toward passed or incomplete iterations. Performance metrics, such as average response

All Pages and Transactions that fully complete before a validator failed, are considered as started

that contains the failed request with a validator is considered as started and

All Pages and Transactions that did not start as a result of the failed validator which stopped the

marked as failed, its performance metrics, such as average response

User Guide v1

BUILDING TEST CASE - OTHER TEST CASE ELEMENTS 189

An If...Then condition will execute its child
objects if a given condition is true (or false).
The condition will compare an extractor to a
string to determine if the loop should run.

To create an If...Then condition, follow the
following steps:

1. Go to the Build Test Case node.

2. Select the starting object

3. Right mouse click to open the Context
Menu and click Create If...Then.

4. A new object dialog will appear.

5. Select the last object in the condition.

6. Click Create If...Then.

7. In the property Extractor to match, select
an Extractor from the drop-down to compare
with the string.

8. In the property Text to match enter a string
to compare with the Extractor.

9. In the property Run the child objects if
Match? select Yes to run the children when
the Extractor matches the String, and skip the
children when the Extractor does not match
the String. Select No to skip the children when
the Extractor matches the String, and run the
children when the Extractor does not match
the String.

After that, before executing the child objects,
the extractor's value will be compared to a
string to determine if the they should run.

4.6.6 Do...While

Sometimes it is not possible to determine in
advance how many times a loop should be
repeated. Here is an example:

A user queries a Check Status page multiple
times until the server completes a slow
asynchronous transaction and redirects to a
Result page. When recording such test case,
it is unknown how many times during the load
test each virtual user should query the Check
Status page. To configure such scenario, it is
necessary to use a Do...While
Loop). Conditional loops have a
which is checked at the end of the loop to
determine if the loop should continue or exit.
You can configure a loop to exit when the
condition returns true or false.

BUILDING TEST CASE - OTHER TEST CASE ELEM

Sometimes it is not possible to determine in
advance how many times a loop should be
repeated. Here is an example:

A user queries a Check Status page multiple
times until the server completes a slow
asynchronous transaction and redirects to a
Result page. When recording such test case,
it is unknown how many times during the load
test each virtual user should query the Check
Status page. To configure such scenario, it is

Do...While (Conditional
Conditional loops have a condition

which is checked at the end of the loop to
determine if the loop should continue or exit.
You can configure a loop to exit when the
condition returns true or false.

User Guide v1

OTHER TEST CASE ELEMENTS 190

User Guide v1

BUILDING TEST CASE - OTHER TEST CASE ELEMENTS 191

Two types of conditions are supported.

o A Text Based condition depends
on finding a specified text or regular
expressions in a response.

o An Extractor Based condition
depends on matching an extractor
value with a specified text.

To make the provided example work, a Text
Based exit condition should be defined. This
condition has to verify if the response contains
"Location:
http://www.website.com/result.aspx". In this
case, exit the loop.

To create a conditional loop, follow these
steps:

1. Go to the Build Test Case node.

2. Select the starting object.

3. Right mouse click to open the context menu
and Click Create Do...While.

4. A new object dialog will appear.

User Guide v1

BUILDING TEST CASE - OTHER TEST CASE ELEMENTS 192

5. Select the last object in the loop

6. Click Create Do...While.

7. Set the Number of Repeats (Max) property
to the maximum allowed number of loop
iterations to avoid endless loops.

8. Optionally specify in the Delay before next
Loop.

9. Select condition type as Text Based or
Extractor Based

10. The Text Based condition is based on
finding a specified text or regular expressions
in an HTTP response . For this condition, type
specify the following:

a. From the drop-down select Response to
Search, where the specified text or regular
expressions will be searched.

b. In the Search Text property, specify a
character string that will be searched in the
HTTP response.

c. In the Search Text Type property select
Text if the search string is a text, or select
Regular Expression if the search string is
regular expressions.

d. In the Exit While Loop if Match?
select Yes to repeat the loop, when the
search text is not found, and exit the loop,
when the search text is found. Or select
to repeat the loop, when the search text is
found and exit the loop when the search text is
not found.

11.The Extractor Based conditio
evaluating an extractor. For this condition type
specify the following:

a. From the drop-down, select the
Name that will be used

b. In the Text to compare property, specify a
text to compare with the Extractor

c. In the Exit While Loop if Match
select Yes to repeat the loop,when the
extractor value is not found, and exit the loop
when the extractor value is found. Or select
No to repeat the loop when the extractor value
is found, and exit the loop when the extractor
value is not found.

4.6.7 Delay

The delay object adds a pause in iteration
execution.

1. Go to the Build Test Case

2. Select the object where you want to insert
the delay.

3. Right click and select Insert Delay
select Insert Before or Insert After

4. In the property grid set the
property to the number of seconds to delay.

BUILDING TEST CASE - OTHER TEST CASE ELEM

Exit While Loop if Match? property
to repeat the loop, when the

search text is not found, and exit the loop,
when the search text is found. Or select No
to repeat the loop, when the search text is
found and exit the loop when the search text is

11.The Extractor Based condition is based on
evaluating an extractor. For this condition type

down, select the Extractor

property, specify a
text to compare with the Extractor

Loop if Match ? property,
to repeat the loop,when the

extractor value is not found, and exit the loop
when the extractor value is found. Or select

to repeat the loop when the extractor value
is found, and exit the loop when the extractor

The delay object adds a pause in iteration

Test Case node.

2. Select the object where you want to insert

Insert Delay then
Insert After.

4. In the property grid set the Delay (s)
property to the number of seconds to delay.

User Guide v1

OTHER TEST CASE ELEMENTS 193

4.6.8 Rendezvous Points

Rendezvous are points in a test case that are
used to synchronize Virtual Users to carry out
tasks at the same moment. This is used to
order to create a simultaneous load on the
server at specific points in the test case.

For example, imagine a test case that logs in,
performs a critical action and logs out. It is
required to test the critical action under a 100
VU load. However, r unning a steady load with
100 VUs will not guarantee 100 VU load on
the critical action because each VU must first
login. Since it is unpredictable how long the
login will take, it can't be guaranteed that all
100VUs will execute the critical action at the
same time. In these situations you can add a
rendezvous before the critical action to have
each VU wait after its login for all other VUs to
login.

To add a rendezvous, do the following:

1. Go to the Build Test Case

2. Select the object where you want to insert
the rendezvous.

3. Right click and select Insert R
then select Insert Before or

4.6.9 Skip-to-Next

BUILDING TEST CASE - OTHER TEST CASE ELEM

Rendezvous Points

Rendezvous are points in a test case that are
used to synchronize Virtual Users to carry out
tasks at the same moment. This is used to

ate a simultaneous load on the
server at specific points in the test case.

For example, imagine a test case that logs in,
performs a critical action and logs out. It is
required to test the critical action under a 100

unning a steady load with
100 VUs will not guarantee 100 VU load on
the critical action because each VU must first
login. Since it is unpredictable how long the
login will take, it can't be guaranteed that all
100VUs will execute the critical action at the
same time. In these situations you can add a
rendezvous before the critical action to have
each VU wait after its login for all other VUs to

To add a rendezvous, do the following:

Test Case node.

2. Select the object where you want to insert

Insert Rendezvous
or Insert After.

Next-Iteration

User Guide v1

OTHER TEST CASE ELEMENTS 194

User Guide v1

BUILDING TEST CASE - OTHER TEST CASE ELEMENTS 195

The skip to next iteration object stops the
current iteration execution. This might be
useful if the test case has a fail condition and
should retry by starting the test case iteration
over again. Unlike a failed iteration, an
iteration that was skipped will count toward the
total test case iterations.

1. Go to the Build Test Case node.

2. Select the object after which you want to
stop the current iteration execution.

3. Right click and select Insert Skip-to-Next-
Iteration then select Insert Before or Insert
After.

4.6.10 Set-Cookie

StresStimulus handles cookie correlation automatically. Every time a server response contains a
Set-Cookie header, StresStimulus acts accordingly and sets the request cookie value in all
subsequent requests. However, in some rare instances the request cookie value is set by some
client side script and can't be automatically correlated. For example, an application can have a
client script that after every click, sets a timeout cookie to a few minutes into the future to monitor
user inactivity. While load testing such test case, the recorded value of this cookie can't be used
because the server will think the VU is inactive. In these cases, you can use the Set-Cookie object
to manually parameterize the cookie value.

To use the set-cookie object:

1. Go to the BuildTest Case node.

2. Select the object where you want to insert the
set-cookie after. The value of the cookie will
be set at that time during the test case
execution.

3. Right click and select Insert Set-Cookie then
select Insert Before or Insert After.

4. In the property grid set the following
properties:

a. Set the Name of the cookie.

b. Set the expression that will be
evaluated to determine the value of
the cookie. The expressions should
be be selected from the variable

picker in the property grid.

c. Set the Domain (host) that the c
belongs to.

d. Set the Path that the cookie belongs
to. The default is "/" which means all
pages in the domain.

4.7 Managing Test Case(s)

Sometimes it is necessary to have VUs emulate different navigating scenarios during a test in order
to more accurately mimic real life situations. For example, in an e
are browsing the catalog while other VUs are placing orders. To accommodate such testing
requirements, StresStimulus should execute several test cases concurrently durin
Multiple test cases are used mainly to emulate different categories of users, concurrently accessing
a website.

4.7.1 Creating Multiple Test Cases

The following methods are used to add more test cases to an existing test.

 Recording a test case

 Setting a test case from existing sessions

 Cloning a test case

 Importing a test case from another test

BUILDING TEST CASE - MANAGING TEST CASE(S

picker in the property grid.

Set the Domain (host) that the cookie

Set the Path that the cookie belongs
to. The default is "/" which means all
pages in the domain.

Managing Test Case(s)

Sometimes it is necessary to have VUs emulate different navigating scenarios during a test in order
accurately mimic real life situations. For example, in an e-commerce website, some VUs

are browsing the catalog while other VUs are placing orders. To accommodate such testing
requirements, StresStimulus should execute several test cases concurrently durin
Multiple test cases are used mainly to emulate different categories of users, concurrently accessing

Creating Multiple Test Cases

The following methods are used to add more test cases to an existing test.

Setting a test case from existing sessions

Importing a test case from another test

User Guide v1

MANAGING TEST CASE(S) 196

Sometimes it is necessary to have VUs emulate different navigating scenarios during a test in order
commerce website, some VUs

are browsing the catalog while other VUs are placing orders. To accommodate such testing
requirements, StresStimulus should execute several test cases concurrently during the test.
Multiple test cases are used mainly to emulate different categories of users, concurrently accessing

The following methods are used to add more test cases to an existing test.

User Guide v1

BUILDING TEST CASE - MANAGING TEST CASE(S) 197

 Setting a Test Case from a .saz or .har session file or JMeter result file.

4.7.1.1 Recording a Test Case

Adding additional test cases to a test is done the same way as creating the first one. First you can
record a test case or set existing sessions as a test case as described in Recording Test Case.

Select the Add Test Case option to create another test case.

4.7.1.2 Cloning a Test Case

To clone a selected test case, in the Managing Test Case(s) section, click Clone Test Case on
the toolbar. All sessions and test case objects will be duplicated.

4.7.1.3 Importing a Test Case from another test

Test cases can be imported from one test to another. In the Managing Test Case(s) section, click
Import Test Cases from another Test on the toolbar and then in the Windows Explorer pop-up
window, select an .ssconfig file and click Open. All test cases from the selected test will be
imported into the current test. All test objects will be copied into the .ssconfig file of the current test,
and all .saz files with sessions will be copied into the current folder.

User Guide v1

BUILDING TEST CASE - MANAGING TEST CASE(S) 198

Tip: If you need to import some but not all test cases, then after the import, delete the test
cases you do not need.

4.7.1.4 Setting a Test Case from a Session File

Click Open a session file as a Test Case and select a Fiddler file (.saz, HTTP archive file (.har)
or JMeter result file. The selected file will be imported as a new Test Case.

User Guide v1

BUILDING TEST CASE - MANAGING TEST CASE(S) 199

Tip: Test cases on the list are sorted alphabetically. Rename the test cases to displays them
in the order you need.

4.7.1.5 Import JMeter result file

StresStimulus can import JMeter test cases saved as a sample results file. The results file must be
in XML format and must include all requests and responses.

To create this file, in JMeter add a Table or Tree Listener to a Test Script Recorder. It is highly
recommended to use sample results from the recording to make sure all the request and response
data is accurate. The results listener should now be attached to the recorder.

Click the configure button to bring up the sample save results configuration dialog.

In the appeared dialog, check all the boxes to make sure the results file will have all the necessary
data .

User Guide v1

BUILDING TEST CASE - MANAGING TEST CASE(S) 200

To import the results file, in StresStimulus go to the Managing Test Case(s) section node on the
Workflow tree and click Open a session file as a Test Case.

In the appeared open file dialog, select the JMeter results file in the filter and select the path of the
saved Jmeter file.

User Guide v1

BUILDING TEST CASE - MANAGING TEST CASE(S) 201

4.7.2 Exporting a Test Case

Test case sessions are stored internally in Fiddler .saz format. A session .saz file is a part of the
test. It can be used with comparable programs.

Additionally, test case sessions can be exported as an HTTP archive (.har).

Info: HAR format is owned by W3C (see HTTP Archive (HAR) format). It is adopted by all
major web browsers and many web metering and performance tools , listed here.

To save test case sessions as an HTTP archive, in Managing Test Case(s) section, right-click a
test case and select Export Test Case.

User Guide v1

BUILDING TEST CASE - MANAGING TEST CASE(S) 202

4.7.2.1 Web Test Script Generator for Visual Studio

A test case can be exported to Visual Studio ".webtest" format. This can be useful when test cases
recorded using Visual Studio recorder do not work because of missing correlation parameters or a
portion of the traffic (i.e. requests issued by Active-X controls) . In this case, the test case can be
recorded in StresStimulus and then exported to .webtest format, so that it can be opened and
properly executed in Visual Studio.

To export a test case, in the Test Case Tree, navigate to Managing Test Case(s), select a test
case, right-click and select Export as a Visual Studio Web Test.

When exporting, StresStimulus will export only the following test case elements:

 All Requests, including headers and body.

 Extractors

 Parameters

 Pages and Transactions

All other test case objects must be recreated manually when the .webtest is imported into Visual
Studio.

User Guide v1

BUILDING TEST CASE - MANAGING TEST CASE(S) 203

4.7.3 Editing and Deleting a Test Case

1. Editing a Test Case

Only one test case can be edited at a time. In
order to unlock a different test case, which is
currently locked for editing, select it and click
Click to view the selected Test Case and
unlock it for changes. After that, the test
case name is displayed in the StresStimulus
application title bar or in the Fiddler title bar
when the StresStimulus tab is selected.

Unlocking a Test Case for changes does not
impact its or any other test case's execution.
This options impacts only which test case is
available for editing.

2. Deleting a Test Case

Test cases can be deleted by selecting them
and clicking Delete.

A Test should have at least one Test Case.
The last Test Case cannot be deleted. You
can replace it either by re-recording or setting
a new Test Case.

4.7.4 Running Multiple Test Cases

There are two test case mixing models: concurrent and sequential-concurrent.

4.7.4.1 Concurrent Test Case

By default multiple test cases are executed concurrently (in-parallel). Every test case has a Mix
Weight configuration property. A mix weight is a relative frequency (in units) of the Test Case
replay in the mix. It is also a relative probability that a virtual user will be assigned to this test case.
VUs are distributed between the Test Cases proportionately to their Mix Weights.

Note: Every VU, after its instantiation, is assigned to a specific Test Case for the entire
duration of the test. For every subsequent VU, test cases are selected in round-robin order,
while skipping some of them to achieve the VU distribution corresponding to the mix weights.

To set a test case mix weight, change the Mix Weight in the property grid.

User Guide v1

BUILDING TEST CASE - MANAGING TEST CASE(S) 204

4.7.4.2 Sequential Test Case Groups

Test cases can be combined into groups, called Test Case (TC) Groups. Test cases in a TC Group
are executed sequentially in a predetermined order by a group of VUs. Using TC Groups allows
recording smaller and less complex test cases, and then combining them into needed sequences.
Several TC Groups are executed in parallel by different groups of VUs. A test case can be added to
several different TC Groups.

Creating TC Groups

To create a test case group,

1. Select the Test Case Group tab,

2. Click Create on the toolbar

3. Create Test Case Group dialog will appear

4. Enter TC Group name

5. Add the selected test cases to the group.

6. Arrange the order of test case execution by moving them up or down on the list.

User Guide v1

BUILDING TEST CASE - MANAGING TEST CASE(S) 205

7. Click Create Group

8. Test cases will appear on the tree in the order of their execution.

Note: Once at least one TC Group is created, then each VU can only execute a TC Group,
not a test case outside a TC Group. If you want to execute a TC not included in any TC
Group, then create a TC Group with a single test case. Before creating the first TC Group the
following warning will appear.

Note:

 Every TC should be configured independently either before or after adding it to the TC
Group.

 When at least one TC Group is created, the Mix Weight and cache control-related properties

are moved from Test Cases to TC Groups because all test cases in a TC Group are
executed with the same frequency and must have the same cache control settings.

TC Groups execution is similar to that of test cases. If a Test ha
they are executed concurrently. The Mix Weight property of each TC Group determines the relative
frequency (in units) of its replay in the mix.

Every VU is assigned to a specific TC Group for the entire duration of the test.
test cases in a TC Group before starting the next iteration of the TC Group.

In the example shown below, a test has 5 test cases. 4 out of them are part of 3 TC Groups with
mix weights 40%, 20% and 40% respectively. Test emulated 5 VUs.

VU1 and VU4 will execute TC1 and TC2 sequentially, VU2 will execute TC3, VU3 and VU5 will
execute TC1 and TC4 sequentially, TC5 will not be executed as it is not part of ant TC Group.

4.7.4.3 User Groups

When server authentication is used, some test cases may require users that have certain
permissions. Therefore there is a need to map certain VUs' credentials to certain test cases. In
StresStimulus, this is implemented using
group, and every test case runs with a selected user group. Here is how to use these user group:

1. In the Authentication section, input all the credentials.

2. Click the User Groups checkbox to show the User Group column.

3. In each credential record, write

BUILDING TEST CASE - MANAGING TEST CASE(S

are moved from Test Cases to TC Groups because all test cases in a TC Group are
executed with the same frequency and must have the same cache control settings.

TC Groups execution is similar to that of test cases. If a Test has more than one TC Group, then
they are executed concurrently. The Mix Weight property of each TC Group determines the relative
frequency (in units) of its replay in the mix.

Every VU is assigned to a specific TC Group for the entire duration of the test.
test cases in a TC Group before starting the next iteration of the TC Group.

In the example shown below, a test has 5 test cases. 4 out of them are part of 3 TC Groups with
mix weights 40%, 20% and 40% respectively. Test emulated 5 VUs.

VU1 and VU4 will execute TC1 and TC2 sequentially, VU2 will execute TC3, VU3 and VU5 will
execute TC1 and TC4 sequentially, TC5 will not be executed as it is not part of ant TC Group.

is used, some test cases may require users that have certain
permissions. Therefore there is a need to map certain VUs' credentials to certain test cases. In
StresStimulus, this is implemented using User Groups. Every VU credential is assigned to a
group, and every test case runs with a selected user group. Here is how to use these user group:

In the Authentication section, input all the credentials.

checkbox to show the User Group column.

In each credential record, write in the group name that the record will belong to.

User Guide v1

MANAGING TEST CASE(S) 206

are moved from Test Cases to TC Groups because all test cases in a TC Group are
executed with the same frequency and must have the same cache control settings.

s more than one TC Group, then
they are executed concurrently. The Mix Weight property of each TC Group determines the relative

Every VU is assigned to a specific TC Group for the entire duration of the test. A VU executes all
test cases in a TC Group before starting the next iteration of the TC Group.

In the example shown below, a test has 5 test cases. 4 out of them are part of 3 TC Groups with

VU1 and VU4 will execute TC1 and TC2 sequentially, VU2 will execute TC3, VU3 and VU5 will
execute TC1 and TC4 sequentially, TC5 will not be executed as it is not part of ant TC Group.

is used, some test cases may require users that have certain
permissions. Therefore there is a need to map certain VUs' credentials to certain test cases. In

. Every VU credential is assigned to a user
group, and every test case runs with a selected user group. Here is how to use these user group:

in the group name that the record will belong to.

4. In the Managing Test Case section, select a test case (or test case group) and set the
Group property to the group name that this Test Case will use.

BUILDING TEST CASE - MANAGING TEST CASE(S

In the Managing Test Case section, select a test case (or test case group) and set the
property to the group name that this Test Case will use.

User Guide v1

MANAGING TEST CASE(S) 207

In the Managing Test Case section, select a test case (or test case group) and set the User

User Guide v1

CONFIGURING TEST - MANAGING TEST CASE(S) 208

5 CONFIGURING TEST

Search the Configuring Test section

StresStimulus generates test workload by executing several procedures:

 Completing test iteration s. StresStimulus replays a test case once per VU. A test iteration is
a basic unit of load test.

 Implementing a load pattern . StresStimulus instantiates a certain number of VUs at certain
moments. Two load patterns are supported: Steady load and Step load (see User Interface
Reference -> Load Pattern).

 Emulating a VU load. After the VU is instantiated, test iteration completes multiple times until
test ends.

 Ending a test . StresStimulus registers the moment a test completion condition occurs and
finalizes the test according to selected test completion method (see User Interface Reference ->
Test Duration).

These procedures are executed independently and concurrently. As a result, multiple VUs may be
instantiated at different times, and each of them emulates the load by looping through their
respective iterations independently until the test tends. If the test consists of several test cases,
then different VUs will loop through different test cases.

All steps of configuring a test are performed on the Main tab on the third sections in the Workflow
Tree, Configure Test.

User Guide v1

CONFIGURING TEST - LOAD PATTERN 209

5.1 Load Pattern

Load Pattern defines how virtual users are instantiated. To configure VU load, select the Load
Patten node in the Workflow Tree. There are two ways to create a load: Steady Load and Step
Load.

5.1.1 Steady Load

A Steady load is a constant number of users during the entire test. When choosing Steady Load,
set the Number of VU property to the number of users you want to create during the test.

User Guide v1

CONFIGURING TEST - LOAD PATTERN 210

Note: The initial number of .NET threads allocated to the StresStimulus process before the
test starts is equal to the number of VUs. During the test run, operating system can increase
the number of threads if necessary because every VU can issue more than one concurrent
request. You can increase the number of threats manually as described in the Load
Generator Performance section.

5.1.2 Step Load

In a step load, the number of VUs increases up to a certain point. The test starts with a Start VU
number. Then on every Step Duration, the number of VUs increases by Step VU Increase. Once
the Max VU is reached, new VUs will no longer be instantiated.

User Guide v1

CONFIGURING TEST - TEST DURATION 211

You can optionally set the Over(s) property to gradually increase the step VUs over a period of
time. If Over is zero, then the increase is instant.

Note: The initial number of .NET threads allocated to the StresStimulus process before the
the test starts is equal to the maximum number of VUs.

5.2 Test Duration

StresStimulus determines when to complete a test based on the test configuration information.
Ending a test is a two-step decision making process:

 Step 1: Wait until the Primary test completion conditions are met.

 Step 2: Finish the remaining part according to the selected Secondary test completion
condition.

Primary test completion conditions:

 Number of Iterations: The test will complete after a certain number of iterations is performed
by VUs.

 Run Duration: The test will complete after a certain amount of time elapsed.

 Reaching Max Users: The test will complete after a certain number of VUs are created (only
used in step load).

Secondary test completion conditions:

User Guide v1

CONFIGURING TEST - TEST DURATION 212

 Stop the Test: End test immediately after the Primary conditions are met.is stored.

 Wait for Responses: Stop sending new requests and wait only for already issued requests to
come back. This condition does not guarantee completion of any specific test case, transaction
or even page.

 Wait for Iterations to Complete: Do not start any new iterations, but complete already started
iteration and wait for responses in iteration. This secondary condition will allow to run test
longer.

If the primary test completion condition is Number of Iterations, then the secondary condition is
implicitly set to Wait for Iteration to Complete.

5.2.1 Number of Iterations

The test will complete after a certain number of iterations are performed by VUs.

1. Set the Max iterations property to specify the number of iterations to perform.

2. Set How to count Iterations.

o Total - The Max iterations will be shared between all VUs. This value must be at least
equal to the Number of VUs in Steady Load or Max VU in Step Load. The new VU will
start a new iteration only if there are non-started iterations remaining. As a
consequence, not all VUs will complete the same number of iterations. Some VUs might
not run because by the time they are instantiated, there are no iterations left to execute.

o Per VU - Each VU will complete the same number of Max iterations.

Note: When the Test Completion Condition is set to Number of Iterations, then all
iterations will be always complete.

User Guide v1

CONFIGURING TEST - TEST DURATION 213

5.2.2 Run Duration

The test will complete after a specified period elapsed and the secondary condition is met.

1. Set the Load generation time (hh:mm:ss) property.

2. Set the secondary condition by configuring the After the time elapsed property by selecting
one of the following

o Wait for responses: No new requests will be sent and VUs will wait for pending
requests' responses.

o Stop the test: No new requests will be sent and all pending requests will be aborted
and excluded from calculations. This option is helpful when precise test duration is
required; for example, when comparing two tests that should have the same duration.

o Wait for iterations to complete: StresStimulus will send all unsent requests in the
current iteration and wait for their responses. As a result, because all iterations
complete, StresStimulus will accurately calculate iteration specific parameters such as
Avg. Iteration Time(s).

User Guide v1

CONFIGURING TEST - TEST DURATION 214

Here is an example: A test case consists of 10 requests and a test runs with one VU for 60
seconds. Let's say, after 60 seconds this VU completed 5 full iterations (which is 50 completed
requests) and started iteration #6 by sending 7 requests and receiving 4 of them back.

 If you selected Wait for Responses, then VU1 will stop issuing requests and will wait only for
the 3 responses which were not received back. After that, VU1 finishes the test with the
following result: 6 iterations started / 5 iterations completed / 7 requests in the last iteration / No
errors.

 If you selected Wait for Iterations to Complete, then VU1 will continue issuing the remaining 3
requests (to complete the iteration) and will wait to receive 6 responses back (the 3 responses
which were not received plus 3 new responses) . After that, VU1 finishes the test with the
following result 6 iterations started / 6 iterations completed.

If the test has more VUs, then StresStimulus will wait until the last VU finishes the test.

5.2.3 Reaching Max VUs

The test will end once the Max VU is reached in Step Load. For that reason, this can only be used
with Step Load. As with Run Duration, you can set a mode for what to do when the Max VUs are
reached.

User Guide v1

CONFIGURING TEST - TEST DURATION 215

5.2.4 Warm-up

A warm-up period is necessary to make sure that state of server resources, such as memory or
cache, are prepared for normal operating mode. For example, after the server restarts, the web
application will operate slower until all necessary processes are loaded into memory, and the
database / application cache is primed.

During the warm-up period StresStimulus runs a test scenario, but ignores captured HTTP sessions
and does not include them into the load test report. This allows to avoid performance measurement
errors related to a cold server. After completion of the warm-up period, StresStimulus executes the
load test normally.

Warm-up capability is available when Test Duration is set to Run Duration or Reaching Max
VUs. During the warm-up period, the number of virtual users will gradually ramp-up to the starting
user setting (Number of VUs in Steady Load or Start VU in Step Load). To set up the warm-up
duration, set the Warm-up(s) property in the grid to the desired number of seconds. After the
warm-up period is over, the same set of users will be used for the actual test. All requests, pages,
transactions, iterations initiated during the warm-up time are excluded from the test metrics.

User Guide v1

CONFIGURING TEST - BROWSER SETTINGS 216

5.3 Browser Settings

One of the factors impacting users' experience is the browser type. For more realistic performance
testing, StresStimulus emulates users working on different browsers. It allows to detect any issues
that the tested website can exhibit in servicing requests from some browsers.

To add a new browser to the mix, click Add (1) in the Browser Type node (2) to display the
Browser Picker dialog (3).

User Guide v1

CONFIGURING TEST - BROWSER SETTINGS 217

In the appeared browser picker, select the platform, browser and version of the browser you want
to add. If you would like to keep the recorded user agent headers, instead of replacing it was the
selected browser user agent, check the appropriate box.

After adding a new browser you can change the following properties In the property grid:

 Browser Type is the name of the browser.

 Mix Weight is the relative frequency (in units or percent) each VU will use that browser type. It
represents the relative size of the group of users working with this browser.

 Connection limit per host is the number of maximum simultaneous connections (requests) a
single VU can create to a single host.

 Connection limit per proxy is the total number of maximum simultaneous connections
(requests) a single VU can create.

 Replace User-Agent string indicates if the recorded User-Agent request header should be
replaced with the browser's value.

 User Agent is the given User-Agent value for the browser.

User Guide v1

CONFIGURING TEST - BROWSER SETTINGS 218

Note: How StresStimulus emulates web browsers:

Click For Details...

(a) Maintains request concurrency based on specific connection limits for the selected
browser type. For non-browser application, the limit is 1.

(b) Injects the appropriate user-agent string into the requests;

(c) Maintains the browser mix distribution, if more than one browser is selected.

5.3.1 Connections Per Host and Proxy

HTTP connection limits per host (server) and per-proxy are enforced based on the selected web
browser.

A web browser typically establishes several concurrent connections to the server so that the page
resources are loaded faster.

StresStimulus emulates such behavior and opens several concurrent connections to load
dependent requests. Depending on the emulated browser type, StresStimulus sets limits on
Requests per Host (maximum simultaneous requests for each domain) and Requests per Proxy
(maximum simultaneous requests to all domains). If you wish to set your own limits, set the
Browser Type to Custom and set the desired connections.

User Guide v1

CONFIGURING TEST - BROWSER SETTINGS 219

5.3.2 User-Agent

The browser sends the User-Agent request header, which includes information about the browser
type and the features it supports (e.g. compression), as well as the client operating system and
installed frameworks and software. This information can impact request processing and
performance.

By default, StresStimulus executes the test case without modifying the recorded User-Agent
request header. To change the user agent, set the Replace User Agent String property to True. A
generic string for the selected browser type will appear in the User Agent property. You can further
change the string to specify the desired client configuration (e.g. a .NET framework version) to be
used for simulating VUs. These User-Agent settings affect only VUs assigned to emulate this
browser type. To change user agents for other uses, make the appropriate changes in the User-
Agent for other browsers.

Note: StresStimulus emulates only the most important browser factors impacting website
scalability, such as connection limit, caching and user-agent. Other browser factors, such as
creating web page DOM and executing JavaScript, are not emulated.

Tip: If a webpage was substantially modified after recording the test case by adding new
external resources, then during the load test the recorded resources will be not be requested.
In order to test a website’s performance with new resources, rerecorded the test case.

User Guide v1

CONFIGURING TEST - NETWORK SETTINGS 220

See Also: You can also use the test case configuration technique described in Emulating
Clicks on Random Links.

5.4 Network Settings

In the real world, different users will likely have different Internet connection speeds provided by
their ISPs. StresStimulus can simulate such uneven network bandwidth distribution by creating a
mix of several network types, providing various bandwidths. To add a new Network to the mix:

Click Add (1) in the Network Type (2) tree node to display the Network Picker dialog (3).

Select the type of network you want to add. The text boxes will display the selected network's
upstream and downstream rates. Or select Custom to create your own network and provide the
upstream and downstream rate.

User Guide v1

CONFIGURING TEST - NETWORK SETTINGS 221

Note: A Network type is emulated by injecting a certain wait time into every request and
response, weighted to its size and the network type bandwidth.

Once the new network appears, configure its Mix Weight which is the relative frequency (in units or
percent) each VU will use that network type. It represents the relative size of the group of users
working with this network.

Tip: Mix weight values can be either percentage or weight.

The network emulation can only slow-down the traffic and cannot speed it up. It is recommended to
use different network type other than LAN only when the test machine is connected to the Web
server through a fast network (LAN). For example, if your physical connection is DSL, then the
emulation of the dial-up will be not accurate.

CONFIGURING TEST

5.5 Server and Agent Monitoring

In addition to monitoring Key Performance
Metrics (KPI) as well as page and transaction
performance, StresStimulus has the
instrumentation to profile the performance of
the remote machines involved in the test
through the local network or Internet.
Performance counters are mainly used for
monitoring resource utilization on multiple
tested servers including Web, application and
database servers, to help in load test
diagnostics. They allow to estimate the impact
of the users' activity on hardware, operating
system an application and help to track do
the source of a website's unproductiveness.
Performance counters are also used to
monitor the health of load agents on client
testing machines to make sure that the test rig
hardware resources are provisioned correctly.

Three groups of counters can be m

1. Performance counters on Windows servers

2. Performance counters on Linux/Unix
servers via SNMP protocol

3. Performance counters on load agents

To configure each group of counters, select an
appropriate node under the Configure Test
Monitoring section of the workflow tree.

Each group of counters is displayed in a
separate graph panel, presenting a separate
curve for each parameter. They are displayed
on the Runtime Dashboard during the test run
and on the test results to help in load test
diagnostics.

CONFIGURING TEST - SERVER AND AGENT MON

Server and Agent Monitoring

In addition to monitoring Key Performance
Metrics (KPI) as well as page and transaction
performance, StresStimulus has the
instrumentation to profile the performance of
the remote machines involved in the test
through the local network or Internet.
Performance counters are mainly used for

ng resource utilization on multiple
tested servers including Web, application and
database servers, to help in load test
diagnostics. They allow to estimate the impact
of the users' activity on hardware, operating
system an application and help to track down
the source of a website's unproductiveness.
Performance counters are also used to
monitor the health of load agents on client
testing machines to make sure that the test rig
hardware resources are provisioned correctly.

Three groups of counters can be monitored:

Performance counters on Windows servers

Performance counters on Linux/Unix
servers via SNMP protocol

Performance counters on load agents

To configure each group of counters, select an
Configure Test ->

n of the workflow tree.

Each group of counters is displayed in a
separate graph panel, presenting a separate
curve for each parameter. They are displayed
on the Runtime Dashboard during the test run
and on the test results to help in load test

User Guide v1

SERVER AND AGENT MONITORING 222

Server and Agent Monitoring

CONFIGURING TEST

5.5.1 KPI Thresholds

To simplify monitoring key performance indicators (KPIs), you can define threshold rules. A
threshold is a borderline value associated with a KPI. When the actual value of the KPI crosses the
borderline, an event is triggered. Such events are registered and presented as part of performance
analytics.

Handling the KPI thresholds is the same as handling the server or agent performance counters
thresholds, described in the Threshold Rules

5.5.2 Windows Servers Monitoring

StresStimulus uses the same API as Windows performance monitor (
Windows performance counters can be monitored. Since the Windows networking and
instrumentation infrastructure is utilized, ther
remote servers.

CONFIGURING TEST - SERVER AND AGENT MON

KPI Thresholds

To simplify monitoring key performance indicators (KPIs), you can define threshold rules. A
threshold is a borderline value associated with a KPI. When the actual value of the KPI crosses the

ered. Such events are registered and presented as part of performance

Handling the KPI thresholds is the same as handling the server or agent performance counters
Threshold Rules section.

Windows Servers Monitoring

StresStimulus uses the same API as Windows performance monitor (Perfmon).
Windows performance counters can be monitored. Since the Windows networking and
instrumentation infrastructure is utilized, there is no need to install any additional software on

User Guide v1

SERVER AND AGENT MONITORING 223

To simplify monitoring key performance indicators (KPIs), you can define threshold rules. A
threshold is a borderline value associated with a KPI. When the actual value of the KPI crosses the

ered. Such events are registered and presented as part of performance

Handling the KPI thresholds is the same as handling the server or agent performance counters

Perfmon). Therefore, any
Windows performance counters can be monitored. Since the Windows networking and

e is no need to install any additional software on

User Guide v1

CONFIGURING TEST - SERVER AND AGENT MONITORING 224

5.5.2.1 Adding Monitors

A Monitor is a predefined set of server
performance counters. To add monitors:

1. Navigate to the Windows Servers (a)
section located under the Monitoring node.

2. On the toolbar, click Add a machine (b).

3. In the appeared dialog (c), enter server IP
address or computer name without "//".
Example: 10.2.2.169 or WEB_SRV5

Note: You can add a web server
targeted in the test. You can also add
application or database servers that are
not directly targeted by HTTP requests
issued by the load generator(s).

4. You may be asked to provide server
credentials. Provide the credentials with
sufficient permissions. For example, use an
account that is part of the Performance
Monitor User group.

If you failed to connect to the server, follow
these steps:

 Navigate to Control Panel -> User Accounts
-> Manage Your Credentials

 In the Credential Manager, click "Add a
Windows credentials link" and add the
server account credentials. If the account
already exists, update it with the correct
credentials (d) or remove and re-create it.

5.Depending on server functions you wish to
monitor, you can select one or several
Monitors by checking boxes (e). The list of
supported monitors and counters (along with
corresponding Windows performance
counters definition) is provided below.

Windows:

User Guide v1

CONFIGURING TEST - SERVER AND AGENT MONITORING 225

o Processor - {machine name} >
Processor > % Processor Time >
_Total

o Available memory - {machine name}
> Memory > Available Mbytes

o Disk - {machine name} >
PhysicalDisk > % Disk Time >
_Total

o Network - {adapter name} > Network
Interface > Packets/sec

Note: StresStimulus attempts to find the
network adapter automatically. If it can't
be found then no adapter is
automatically added. It can still be
added.

ASP.NET:

o Requests Queued

o Request Wait Time

o Request Execution Time

SQL Server:

o SQLServer Memory

o SQLServer Cache

o SQLServer User Connections

6. Click OK (f). A new server with the selected
performance counters (g) will be added.

You can add several servers one after
another.

7. Performance counters' properties are
displayed in the property grid (h). To rename a
counter, change its Display Name property (i)

8. To delete a selected counter or server, click
Delete (j) on the toolbar.

9. To add performance counters to the
selected server, click Edit (k) on the toolbar
and follow the instructions on the next page.

User Guide v1

CONFIGURING TEST - SERVER AND AGENT MONITORING 226

5.5.2.2 Adding More Performance Counters

The basic set of performance counters described in
the previous section is a convenient way to quickly
add a server for monitoring.

You can extend the basic set by aiding more counters
in the areas you wish to monitor.

To add more performance counters to the selected
server

1. Click edit on the toolbar. The Add Performance
Counters dialog (a) will appear

2. From the drop-down (b), select the performance
objects to monitor.

3. Select the specific counter (c).

4. You may need to select an instance of the counter
(d).

5. Highlight the counter to see its description (e).

6. Click Add (f) to add the counter to the New
Counter List (g).

7. Click Delete to remove the highlighted counters
from the New Counter List.

8. When finished adding new counters, click Save (h)
to add the New Counter List to the Test.

The selected set of performance counters is stored
with the test configuration. After reopening a test, its
list of performance counters will be retrieved

Info: There are many sources explaining
Windows performance counters, for example:

 System http://technet.microsoft.com/en-
us/library/cc768048.aspx

 ASP.NET http://msdn.microsoft.com/en-
us/library/fxk122b4.aspx

 SQL Server
http://www.extremeexperts.com/sql/articles/sqlc

User Guide v1

CONFIGURING TEST - SERVER AND AGENT MONITORING 227

ounters.aspx

 Microsoft Dynamics CRM
http://www.microsoft.com/en-
us/download/details.aspx?id=27119

Note: If you added the performance counters to
the test a while ago, they must be valid in order
to work. For example, performance counters on
a remote server will work only if the same server
name or IP address still exists and the server is
accessible with the saved credentials.

5.5.2.3 Troubleshooting Monitors

The Windows monitoring module in
StresStimulus is built on the top of
Windows Perfmon API. If you have issues
adding monitors, then they are most likely
related to your Windows domain/security
infrastructure.

Troubleshooting such issues should be
done outside StresStimulus. First make
sure that you can monitor your remote
server with Perfmon. Launch Perfmon on
the StresStimulus machine and try adding
performance counters from the server you
want to monitor. When troubleshooting
such issues, use all available support
resources related to monitoring
performance of a remote Windows
machine. Typically such resources are
part of Windows server documentation or
related articles and blogs.

User Guide v1

CONFIGURING TEST - SERVER AND AGENT MONITORING 228

After you made Perform work to monitor
the remote server, use the same server
name or IP address and user credentials
in StresStimulus. The resolution might
require checking various computer and
domain credentials, account permissions,
domain and local policies, intermediate
firewalls, etc. It all depends on your
infrastructure settings.

Here is just one example that you can
check: If the Perfmon connection does not
work, in Control Panel on the
StresStimulus machine go to Credential
Manager. Click Add a Windows
credentials and add the remote server
account information. After that, try the
Perfmon connection again.

Once Perfmon on the StresStimulus
machine can connect to your server,
StresStimulus would be able to connect
as well.

5.5.3 Linux/Unix Servers Monitoring

StresStimulus can monitor various metrics of
Linux/Unix-based servers during the load test
execution using SNMP protocol. The next two
sections provide examples of configuring
SNMP services on different versions of Linux.

To configure monitoring performance
counters, navigate to the Linux/Unix Servers
section (1) located under the Monitoring
node. Any added previously counters and their
properties are displayed in the tree (2), and
the property grid (3).

To delete a selected counter or all counters,

User Guide v1

CONFIGURING TEST - SERVER AND AGENT MONITORING 229

click the appropriate delete button (4).

To add one or several counters, click Add (5)
to start Add SNMP Counters dialog (6). After
that:

1. Enter a host IP address or domain name
without "//". Example: 10.2.2.169 or
WEB_SRV5.

2. Change Community, if necessary.

3. Select a counter from the drop-down. The
boxes OID and Name will be populated

4. To add a counter which is not on the list,
enter its OID and Name.

Tip: To find other system and application
performance counters available via SNMP
protocol, search for MIB object definitions,
available from multiple sources, for example
http://www.mibdepot.com/ .

1. Click Test.

2. Make sure that the object is available and
the SNMP connection works.

Info: For configuring and troubleshooting
SNMP protocol on the server, see the next
sections

g. Click Add to add the counter to the New
Counter List.

User Guide v1

CONFIGURING TEST - SERVER AND AGENT MONITORING 230

h. Click Delete to remove the highlighted
counters from the New Counter List.

i. When finished adding new counters, click
Save to add the New Counter List to the Test.

The selected set of performance counters is
stored with the test configuration. After
reopening a test, its list of performance
counters will be retrieved.

5.5.3.1 CentOS/Red Hat Configuration

1. FIREWALL

If you use an external firewall make sure the following ports are open: 22 (SSH, tcp), 161(SNMP,
tcp/udp), 53 (DNS, udp), 80 and 443 (HTTP HTTPS, tcp), ICMP (ping)

2. INSTALLATION.

To install SNMP Agent Daemon and SNMP clients, use Yum package manager available on all
RedHat Operating systems. Login into the server as a root user and execute the following:

~]# yum -y install net-snmp net-snmp-libs net-snmp-utils

Tip: If you are using Sudo then do “sudo su - root” or “su root” to become a root user.

3. CONFIGURATION

 Move snmd.conf to snmpd.conf_bak:(in order to backup defaults)

~]# cd /etc/snmp/
~]# mv snmpd.conf snmpd.conf_bak

 Add the following configuration to new snmpd.conf file (replace “My Location” and “My Name”
with your data):

~]# echo 'syslocation "My Location"' >> snmpd.conf
~]# echo 'syscontact "My Name"' >> snmpd.conf
~]# echo '' >> snmpd.conf
~]# echo 'rocommunity public' >> snmpd.conf
~]# echo '' >> snmpd.conf
~]# echo 'disk /' >> snmpd.conf (this is for disk counters)

4. STARTING THE SERVICE

User Guide v1

CONFIGURING TEST - SERVER AND AGENT MONITORING 231

 To run the snmpd service in the current session, enter the following at a shell prompt as a root:

~]# service snmpd start

 To configure the service to be automatically started at boot time, use the following command:

~]# chkconfig snmpd on

5. TESTING, TROUBLESHOOTING

 To make sure SNMP listens on valid port and to all IPs execute this command

~]# netstat -nepl

 If SNMP listener works only on 127.0.0.1 IP addresses, try to restart snmpd daemon (~]#
service snmpd restart) .

 If the previous step does not help, check “SNMPDOPTS=” string at /etc/default/snmpd and
make sure it looks like this

SNMPDOPTS='-Lsd -Lf /dev/null -u snmp -g snmp -I -smux -p /var/run/snmpd.pid -c
/etc/snmp/snmpd.conf'

 Make sure SNMP is installed properly. For example, the following snmpwalk command shows
the system tree with a default agent configuration.

~]# snmpwalk -v2c -c public localhost system

Output should look like this:

public static void main(String[] args) { System.out.println("
SNMPv2-MIB::sysDescr.0 = STRING: Linux ip-10-239-15-166 2.6.32-358.14.1.el6.x86_64 #1
SMP Mon Jun 17 15:54:20 EDT 2013 x86_64
SNMPv2-MIB::sysObjectID.0 = OID: NET-SNMP-MIB::netSnmpAgentOIDs.10
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (1013444) 2:48:54.44
SNMPv2-MIB::sysContact.0 = STRING: "My Name"
SNMPv2-MIB::sysName.0 = STRING: ip-10-239-15-166
SNMPv2-MIB::sysLocation.0 = STRING: "My Location"
"); }

 Select a counter by completing the Add SNMP Counters dialog, as described in the previous
section, and click Test. You should receive "The SNMP counter is tested successfully"
message.

User Guide v1

CONFIGURING TEST - SERVER AND AGENT MONITORING 232

 If instead you receive "Can't connect to the host" message, make sure that port 161 is open for
UDP and TCP traffic on the Linux server. To open these ports, execute the following
commands:

public static void main(String[] args) { System.out.println("
iptables -I INPUT -p udp --dport 161 -j ACCEPT
iptables -I INPUT -p tcp --dport 161 -j ACCEPT
iptables -I FORWARD -p udp --dport 161 -j ACCEPT
iptables -I FORWARD -p tcp --dport 161 -j ACCEPT
iptables-save

"); }

5.5.3.2 Ubuntu / Debian Configuration

1. FIREWALL

If you use external firewall make sure the following ports are open: 22 (SSH, tcp), 161(SNMP,
tcp/udp), 53 (DNS, udp), 80 and 443 (HTTP HTTPS, tcp), ICMP (ping)

2. INSTALLATION.

- To install SNMP daemon, utilities and libs run this command

~# apt-get install snmpd snmp smistrip

Tip: If you are using sudo then do “sudo su - root” or “su root” to become root user

3. CONFIGURATION

 Move snmd.conf to snmpd.conf_bak:(in order to backup defaults)

~]# cd /etc/snmp/
~]# mv snmpd.conf snmpd.conf_bak

 Add the following configuration to new snmpd.conf file (replace “My Location” and “My Name”
with your data):

~]# echo 'syslocation "My Location"' >> snmpd.conf
~]# echo 'syscontact "My Name"' >> snmpd.conf
~]# echo '' >> snmpd.conf
~]# echo 'rocommunity public' >> snmpd.conf
~]# echo '' >> snmpd.conf
~]# echo 'disk /' >> snmpd.conf

User Guide v1

CONFIGURING TEST - SERVER AND AGENT MONITORING 233

 Open /etc/default/snmpd

~]# nano /etc/default/snmpd

 Find “SNMPDOPTS=” parameter. On different systems the configuration strings can be
different, but generally it should look like

SNMPDOPTS='-Lsd -Lf /dev/null -u snmp -g snmp -I -smux -p /var/run/snmpd.pid'
or
SNMPDOPTS='-Lsd -Lf /dev/null -u snmp -I -smux -p /var/run/snmpd.pid 127.0.0.1'

 Change the configuration strings to

SNMPDOPTS='-Lsd -Lf /dev/null -u snmp -g snmp -I -smux -p /var/run/snmpd.pid -c
/etc/snmp/snmpd.conf'

4. STARTING THE SERVICE

To run the snmpd service in the current session, enter the following at a shell prompt as root:

~]# service snmpd start

5. TESTING, TROUBLESHOOTING

 To make sure SNMP listens on valid port and to all IPs execute this command

~]# netstat –nepl

 If SNMP listener works only on 127.0.0.1 IP addresses, try to restart snmpd daemon (~]#
service snmpd restart) .

 If the previous step does not help, check “SNMPDOPTS=” string at /etc/default/snmpd and
make sure it looks like this

SNMPDOPTS='-Lsd -Lf /dev/null -u snmp -g snmp -I -smux -p /var/run/snmpd.pid -c
/etc/snmp/snmpd.conf'

 Make sure SNMP is installed properly. For example, the following snmpwalk command shows
the system tree with a default agent configuration.

~]# snmpwalk -v 2c -c public localhost .1.3.6.1.2.1.1

User Guide v1

CONFIGURING TEST - SERVER AND AGENT MONITORING 234

Output should look like this

SNMPv2-MIB::sysDescr.0 = STRING: Linux snmptest.com 3.8.0-29-generic #42~precise1-
Ubuntu SMP Wed Aug 14 16:19:23 UTC 2013 x86_64
SNMPv2-MIB::sysObjectID.0 = OID: NET-SNMP-MIB::netSnmpAgentOIDs.10
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (52495) 0:08:44.95
SNMPv2-MIB::sysContact.0 = STRING: "My Name"
SNMPv2-MIB::sysName.0 = STRING: snmptest.com
SNMPv2-MIB::sysLocation.0 = STRING: "My Location"
SNMPv2-MIB::sysORLastChange.0 = Timeticks: (0) 0:00:00.00
SNMPv2-MIB::sysORID.1 = OID: SNMP-FRAMEWORK-
MIB::snmpFrameworkMIBCompliance
SNMPv2-MIB::sysORID.2 = OID: SNMP-MPD-MIB::snmpMPDCompliance
SNMPv2-MIB::sysORID.3 = OID: SNMP-USER-BASED-SM-MIB::usmMIBCompliance

 Select a counter by completing the Add SNMP Counters dialog, as described in the previous
section, and click Test. You should receive a "The SNMP counter is tested successfully"
message.

 If instead you receive a "Can't connect to the host" message, make sure that port 161 is open
for UDP and TCP traffic on the Linux server. To open these ports, execute the following
commands:

iptables -I INPUT -p udp --dport 161 -j ACCEPT
iptables -I INPUT -p tcp --dport 161 -j ACCEPT
iptables -I FORWARD -p udp --dport 161 -j ACCEPT
iptables -I FORWARD -p tcp --dport 161 -j ACCEPT
iptables-save

5.5.4 Load Agents Monitoring

Load Agents are executed on Windows machines or cloud instances. Their monitoring is configure
similarly to Windows Server(s) Monitoring

User Guide v1

CONFIGURING TEST - SERVER AND AGENT MONITORING 235

5.5.5 Threshold Rules

To simplify monitoring servers and load
agents, you can define threshold rules. A
threshold is a borderline value associated with
a performance counter. When the actual value
of the counter crosses the borderline, an event
is triggered. Such events are registered and
presented as part of performance analytics.

Thresholds can be created for any of the
server or agent performance counters. To
create a threshold rule, follow these steps:

1. Select a server or agent performance
counter

2. In the property grid, Set Enable Threshold
property to Yes.

3. Enter two threshold values: Warning
Threshold to monitor warnings and Critical
Threshold to monitor errors.

4. If thresholds reflect high-values, set Alert if
Over to Yes to indicate that exceeding a
threshold is a problem. If thresholds reflect
low-values, set Alert if Over to No to
indicate that falling below a threshold is a
problem.

During a load test execution, you can analyze
violations that occur for the configured
threshold rules. Results of threshold
monitoring are presented in the Runtime
Dashboard and test reports on the curve grid
below the performance counter graph.
Warnings are displayed in orange (a), errors
are displayed in red (b).

Curves on which the threshold is defined, will
display warning violation as orange
thriangles(c) and critical violations as a red
crosses (d).

5.6 Test Result Storage

Test results are stored in a database. There are four types of settings that can be

 How much data to store:
etc.).

 Session content: Specify how many details to store in the test log.

 Data storage medium: Specify what database type to use.

 Agent to controller replication:
sessions issued by the agents with SQL Server CE
necessary for waterfall charts.

1. Go to Result Storage node in the

2. Configure what data to store by selecting one of the

o All: All the resulting data, including a summary report, all result grids, graphs, and all
request/response session info (this is the largest part).Use this mode
view individual request/response info of replayed sessions.

CONFIGURING TEST - TEST RESULT STORAGE

Test Result Storage

Test results are stored in a database. There are four types of settings that can be

How much data to store: Specify what type of information should be saved (reports, test log,

Specify how many details to store in the test log.

Specify what database type to use.

replication: Specify if you want to copy information to the controller about
sessions issued by the agents with SQL Server CE-based storage. This information is
necessary for waterfall charts.

node in the Workflow Tree .

figure what data to store by selecting one of the How Much Data to Store

All the resulting data, including a summary report, all result grids, graphs, and all
request/response session info (this is the largest part).Use this mode
view individual request/response info of replayed sessions.

User Guide v1

TEST RESULT STORAGE 236

Test results are stored in a database. There are four types of settings that can be configured:

Specify what type of information should be saved (reports, test log,

Specify if you want to copy information to the controller about
based storage. This information is

Much Data to Store property values:

All the resulting data, including a summary report, all result grids, graphs, and all
request/response session info (this is the largest part).Use this mode if you would like to

User Guide v1

CONFIGURING TEST - TEST RESULT STORAGE 237

o Partial: All the resulting data, including a summary report, all result grids, graphs, but no
request/response session info.

o None: No info result info is stored. You can view the resulting summary report, all result
grids and graphs, but they will be deleted once you run another test or close the test.
Use this mode for quick practice tests. No other settings will apply in this mode.

3. Select what database type to use by selecting Data Storage .

o Embedded SQL Server CE: Every test run will have its own database file with up to 4
GB of data. It can store a test log with up to 4 million sessions with the average session
size (excluding the response body) up to 1 KB.

o SQL Server: Provide your SQL Server to store virtually unlimited test logs.

4. If Embedded SQL Server CE: is selected, the property Save sessions from agents will be
available. In distributed tests with SQL Server CE-based storage, the content of the sessions
generated on the agents is stored on the agents.

o Select Yes, to copy this content to the controller. This will allow generating waterfall
charts for VUs emulated on the agent.

o Select No, to reduce the traffic between agents and controller when the network
bandwidth is limited.

User Guide v1

CONFIGURING TEST - TEST RESULT STORAGE 238

5. If SQL Server is selected, enter an SQL Server Connection String property or

6. Click the square in the property grid to bring up the connection string dialog

1.

o Enter SQL Server name, authentication type, credentials and database name.

o Click Create/Check DB. If you use a new database, all tables and other database
objects will be created automatically. If use an existing database, the connection will be
verified.

o If you selected All during step #2, then most of your data storage will be occupied by the
request/response bodies that are stored in the test log. You can reduce the amount of
stored data by selecting one of the purge options:

SQL Server Notes:

 The user specified in the Login section should be a database owner (dbo) to have sufficient
permissions to create tables and other objects as well as insert and update data. If you
specified a new database, the user should have permission to create databases.

 The network connection between the StresStimulus controller and SQL Server should be
fast enough to transmit real-time insert transactions. VPN or WiFi networks maybe not fast
enough. If StresStimulus determines that the network connection slows down the test
execution, it will stop the test and display a slow connection error message.

 Purge request bodies property (c)

o Non-Errors: Non-Error request bodies are purged and error bodies are not.

o All: All request bodies are purged, no request bodies are stored in the database.

o None: (Default) No request bodies are purged, all request bodies are stored in the
database.

 Purge response bodies property (d)

o Static Mime Types: (Default) Response bodies of images, video and other static
resources are purged. Dynamic responses meaningful for performance analysis will be
stored.

o None: No response bodies are purged, all response bodies are stored in the database.

o Non-Errors: Non-Error response bodies are purged and error bodies are not.

o All: All response bodies are purged, no response bodies are stored in the database.

Info: When you enable purging response
bodies, some responses will not be stored in the
test log. Session inspector will display the
message "StresStimulus truncated" in the place
of the response content when you open a
session with the purged response.

5.6.1 Reducing Test Storage Use

Sometimes during long tests with SQL CE based repository, you might get a notification that test
data reached the maximum capacity of 4 GB allowed for SQL CE storage. After that, the test will
stop, but the test results will be pr

In StresStimulus, you can configure how much, or how little data, you want to store as well as what
data storage medium to use. A number of configuration options provided below can help to avoid
such situation if you plan to run similar or larger tests.

1. If Purge response bodies
Response bodies of images, video and other static resources will be purged, but dynamic
responses meaningful for perfo

2. Change Purge response bodies
request bodies will be purged, but error bodies will be saved. It will allow using storage space
more efficiently, while keeping the
you to run much bigger tests with SQL CE based repository.

CONFIGURING TEST - TEST RESULT STORAGE

When you enable purging response
bodies, some responses will not be stored in the
test log. Session inspector will display the
message "StresStimulus truncated" in the place
of the response content when you open a
session with the purged response.

Reducing Test Storage Use

Sometimes during long tests with SQL CE based repository, you might get a notification that test
data reached the maximum capacity of 4 GB allowed for SQL CE storage. After that, the test will
stop, but the test results will be preserved and a final set of reports will be generated.

In StresStimulus, you can configure how much, or how little data, you want to store as well as what
data storage medium to use. A number of configuration options provided below can help to avoid

situation if you plan to run similar or larger tests.

Purge response bodies property is set to None, then change to Static Mime Types
Response bodies of images, video and other static resources will be purged, but dynamic
responses meaningful for performance analysis will be stored.

Purge response bodies property from Static Mime Types to
request bodies will be purged, but error bodies will be saved. It will allow using storage space
more efficiently, while keeping the diagnostic information to troubleshoot errors. This will allow
you to run much bigger tests with SQL CE based repository.

User Guide v1

TEST RESULT STORAGE 239

Sometimes during long tests with SQL CE based repository, you might get a notification that test
data reached the maximum capacity of 4 GB allowed for SQL CE storage. After that, the test will

eserved and a final set of reports will be generated.

In StresStimulus, you can configure how much, or how little data, you want to store as well as what
data storage medium to use. A number of configuration options provided below can help to avoid

Static Mime Types.
Response bodies of images, video and other static resources will be purged, but dynamic

to Non-Errors. Non-Error
request bodies will be purged, but error bodies will be saved. It will allow using storage space

diagnostic information to troubleshoot errors. This will allow

User Guide v1

CONFIGURING TEST - CONFIGURING TEST PASS/FAIL QUALIFICATION 240

3. If your test generates a very large number of errors and you would like to run it for long time,
consider changing Purge response bodies property to None.

4. In some rare occasions, application under test uses very large requests. For example,
application uploads large files. Consider changing Purge request bodies property from None
to Non-Errors or All.

5. If you can use SQL Server, as test repository, then change Data Storage from Embedded
SQL Server CE to SQL Server. This will allow to use test repository of virtually unlimited size.

5.7 Configuring Test Pass/Fail

Qualification

You can define a custom test quality criteria
which will determine the outcome of the test.
The criteria includes a list of condition
thresholds that if exceeded, will fail the test.

There are 4 condition to choose from:

 Page goal misses

 Transaction goal misses

 Request errors

 Request timeouts

In order to enable the test quality criteria:

1. Navigate to the Pass/Fail configuration
settings (a).

2. Select and enable the desired conditions to
monitor (b).

3. For each criteria, set the percent threshold
for violations (c).

User Guide v1

CONFIGURING TEST - OTHER TEST OPTIONS 241

Setting any threshold to 0 will trigger a
threshold violation if there is at least one
instance of the condition. If at the end of the
test there are any threshold violations then the
test did not pass the test quality criteria and
will fail.

For example, choosing page goal misses and
setting the threshold to 10 will trigger a
threshold violation if 11% of pages missed
their goals.

A complete list of Pass/Fail Qualification
properties is provided in Test Pass/Fail
Qualification

Note: If the test was started from a
command line or a batch and failed, a
status code 1 will be returned. For more
about command line interface, check
Automation.

5.8 Other Test Options

5.8.1 Host and Port Remapping

By default, a test case recorded against a website will test the same website. The Host remapping
feature allows to re-target the host, which was used to record a test case, to a host which should be
load tested. If you need to re-use a test case for another website, the host name or IP address and
its port can be changed. For example, a test case originally recorded against a production server
has to run against a test server.

Port remapping allows to record a test case against the host listening on the port other than 80 (or
443 for HTTPS) and then target a different port during load tests. If the port is not specified, then
HTTP will be used port 80 and for HTTPS will be used port 443

To configure host/port remapping, follow these steps

1. In StresStimulus Main Menu -> Hosts, select Remap Hosts

User Guide v1

CONFIGURING TEST - OTHER TEST OPTIONS 242

2. The Host Remapping dialog will appear

3. Make sure that the Enable Host Remapping is checked;

4. On every line, enter a new host and the original host, separated by at least one whitespace
character ; optionally add the new port and the original port to the host: {New Host}:{New Port} {Old
Host}:{Old Port}

Use host names or IP addresses. For example: 111.222.33.44:8888 testedwebsite.com

5. Click Save.

User Guide v1

CONFIGURING TEST - OTHER TEST OPTIONS 243

User Guide v1

CONFIGURING TEST - OTHER TEST OPTIONS 244

5.8.2 Change URI scheme (HTTP/HTTPS)

Sometimes a secure website is hosted in the
development environment as a non-secure
website. The Change URI scheme feature
allows to record a test case against a website
hosted with the HTTP URI scheme, and then
replay it against the same website hosted with
the HTTPS URI scheme.

This feature allows to specify hosts for which
the recorded scheme will be switched to the
alternative scheme: HTTP to HTTPS and vice
versa.

To configure Change URI scheme, follow
these steps.

1. In StresStimulus Main Menu -> Hosts,
select Change URI scheme.

2. The Change URI scheme dialog will
appear.

3. On every line, enter a host for which you
want to change the URI scheme.

4. Delete lines with the hosts for which you no
longer need to change the URI scheme,

5. Click Save

Note: You can disable the schema change settings for certain test cases. To do so, in the
test case property grid, change the Ignore Schema Change? property to Yes.

5.8.3 Dynatrace Integration

Dynatrace is a Compuware Application Performance Management (APM) suite. It allows to monitor
web application performance, pinpoint bottlenecks, isolate application errors and optimize
performance on all system tiers.

StresStimulus integration with Dynatrace allows to optimize application performance under load,
when performance issues are maximally exposed. StresStimulus allows to include additional data
in HTTP requests to correlate client requests with the server-side code analysis. This gives
performance engineers more information to optimize application responsiveness.

To enable Dynatrace Integration, in the Configure test -> Other Options section, set the property
Enable Dynatrace integration? to Yes.

User Guide v1

CONFIGURING TEST - OTHER TEST OPTIONS 245

StresStimulus integration with Dynatrace is implemented according to the Compuware
specification: Integration with Web Load Testing and Monitoring Tools

When Dynatrace Integration is enabled, the following pieces of information are included in every
request under the “x-Dynatrace” header:

 PC - A Page or transaction name

 ID - A session number in the test case

 NA - The path and query of the request

 AN – An Agent name

 SN - A test case name

 TE - A test name

 VU - A virtual user number

 SI - “StresStimulus”, the issuer of the request

5.8.4 Connections Pools

In order to send an HTTP request, a connection must be established to the server. During load test
execution, every VU establishes multiple connections to the web server(s) being load tested.

There are several steps required to create a new connection:

 Establish connection

 DNS resolution

 HTTPS handshaking (if applicable)

Creating a connection consumes some system resources. In some cases the performance impact
of creating connections can be significant. If too many connections are created then the
performance of the test machine degrades, which may impact accuracy of the test result. In order
to save resources on maintaining connections, connection pools are used to reuse connections for
subsequent requests.

There are two ways how connection pooling
can be handled in StresStimulus:

 Per VU: Each VU has its own connection
pool with its own DNS cache. On a first
request to every host, DNS resolution takes
place and then it is cached in the
connection pool. This behavior of a VU
accurately emulates behavior of a physical
user when every user conducts its own
DNS resolution. Use this option when You
need to accurately estimate DNS resolution
time in your performance tests and when
system resources are sufficient. While
providing accurate DNS resolution
emulation, this connection pooling model
requires more hardware resources, as the
number of connection pools will equal the
number of VUs. This pooling model should
be used when the number of VUs is not too
high or when the load generator machines
have sufficient resources. To enable Per
VU Pooling, in the workflow tree go to
Other Options and change the
shared connection pool for all VUs?
No.

 Shared: There is a single connection pool
that all VUs share. This model consumes
the least amount of system resources and
works best in large-scale tests. The only
disadvantage of this model is that DNS
resolution is performed once per host for all
VUs. For practical purposes, DNS
resolution time in most cases is insignificant
comparison to application server response
time and network latency. Therefore this
pooling model should be used in most
cases as it provides best load test
scalability. It is enabled by default.

CONFIGURING TEST - OTHER TEST OPTIONS

There are two ways how connection pooling
can be handled in StresStimulus:

: Each VU has its own connection
pool with its own DNS cache. On a first
request to every host, DNS resolution takes
place and then it is cached in the
connection pool. This behavior of a VU
accurately emulates behavior of a physical

onducts its own
DNS resolution. Use this option when You
need to accurately estimate DNS resolution
time in your performance tests and when
system resources are sufficient. While
providing accurate DNS resolution
emulation, this connection pooling model
equires more hardware resources, as the

number of connection pools will equal the
number of VUs. This pooling model should
be used when the number of VUs is not too
high or when the load generator machines
have sufficient resources. To enable Per

g, in the workflow tree go to
and change the Use a

shared connection pool for all VUs? to

: There is a single connection pool
that all VUs share. This model consumes
the least amount of system resources and

scale tests. The only
disadvantage of this model is that DNS
resolution is performed once per host for all
VUs. For practical purposes, DNS
resolution time in most cases is insignificant
comparison to application server response

ncy. Therefore this
pooling model should be used in most
cases as it provides best load test
scalability. It is enabled by default.

User Guide v1

OTHER TEST OPTIONS 246

User Guide v1

RUNNING AND MONITORING TEST - OTHER TEST OPTIONS 247

6 RUNNING AND MONITORING

TEST

Search the Running and Monitoring Test section

StresStimulus executes the currently loaded test. It simulates traffic contained in all test cases (or
TC Groups) which have a Mix Weight property greater than zero. All configuration settings for the
test, test cases, TC groups, and their respective objects are taken into account.

StresStimulus emulates physical users by instantiating VUs. A VU is a software object that is
assigned to a specific browser type, network type and a test case (or TCGroup). In distributed tests,
a VU is also assigned to a controller or one of the agents. During test execution, a VU continuously
iterates through the test case, issues corresponding requests, waits for a corresponding server
response, validates them and collects performance metrics.

StresStimulus emulates client requests that look like realistic requests issued by physical browsers,
from the server’s perspective. In reality, however, StresStimulus does not instantiate browser
objects, create web page document object model (DOM), nor run webpage JavaScript.

Once the test is started, a new tab displaying Runtime Dashboard tab will open. It allows to monitor
all aspects of test execution and performance metrics.

User Guide v1

RUNNING AND MONITORING TEST - STARTING TEST 248

6.1 Starting Test

In order to start the test

 click Run on the Workflow Tree toolbar (a).

or

click Run and Monitor Test (b) on the
Workflow Tree.

Optionally enter a Test Run Name (c) and a
Test Run Description (d) for the current test
run. You can also enter or modify the Test
Run Name and Test Run Description at any
time time in the property grid of the Configure
Test section (e).

Info: Test Run Name and a Test Run
Description appear on the test reports
and help to identify past test runs.

To run the test in debug mode, check the
Debug mode box (f) and then click Run Test
(g).

While running a test in debug mode, all
replayed sessions will be displayed in the
session grid and response bodies will not be
purged for easier diagnostic.

Note: Debug mode requires more
hardware resources on the test machine
and should be used only for test
troubleshooting. It is not recommended
to run debug tests with many VUs.

The Test Mix group (h) will show a table with
all test cases (or test case groups) and the
corresponding mix weights (i) and VU

User Guide v1

RUNNING AND MONITORING TEST - RUNTIME DASHBOARD 249

distribution (j). The Mix Weight column may be
modified to change the number of VUs that
each test case will execute.

6.2 Runtime Dashboard

Once the test is started, a new tab displaying the Runtime Dashboard will open. It provides all test
execution instrumentation and controls so a user would not need to navigate to any other parts of
StresStimulus during the test run.

All aspects of test execution and performance metrics are monitored from the Runtime Dashboard.

Info: The full list of Runtime Dashboard elements for monitoring and controlling the test
execution is provided in User Interface Reference -> Runtime Dashboard.

After the test is complete, the Saving Results progress bar will appear to indicate that
StresStimulus processes collected metrics and generates reports.

User Guide v1

RUNNING AND MONITORING TEST - RUNTIME DASHBOARD 250

After that, the Runtime Dashboard tab will be converted into the test result tab that will display the
final test execution snapshot along with all other performance testing information.

Note: By default, the test result name includes a test run time-stamp followed by a test
name: YYYY_MM_DD_HH:MM:SS<test-name>

6.2.1 Layout

Runtime Dashboard includes the following
elements:

1. Toolbar has elements for controlling the
test Monitoring Test Progress and Health

2. Test Progress Panel displays general
parameters

3. Graph section can display between one
and four configurable graph panels.

4. Each graph has a corresponding tab with a
grid that displays additional information about
every graph curve.

5. There are 2 optional Agents Progress and
Test Cases Progress Grids

User Guide v1

RUNNING AND MONITORING TEST - RUNTIME DASHBOARD 251

6.2.2 Controlling the Test

1. Controlling the Test. You can pause and
resume the test by clicking on the
corresponding buttons.

2. Skip pending requests. The Skip button
allows the load engine to abandon all pending
requests instead of waiting for the arrival of
the corresponding server responses.
Abandoned requests are counted as timeouts.
Skipping pending requests allows the load
engine to abandon slow requests and proceed
with issuing remaining ones. This feature is
helpful when the user wants to complete the
test that seems to be "frozen" because some
of the (pending) requests are causing slow
server response.

Note: Skip does not work on Agents.

3. Changing VUs during the test run. You
can adjust the VU count on demand. This
allows to more granularly control the load. To
add VUs during the test:

a. Set the VU adjustment value.

b. Click + to increase the VU count.

Note: To use VU Adjustment, select
Steady Load in the Load Pattern.

4. Test Completion. After the test completion criteria are met, the test will stop automatically. A
test can be stopped manually before its completion. It can be necessary in the following situations:

 While test is running, sufficient information about the tested application performance was
collected and further test execution is not necessary.

 The test configuration does not reflect your testing goal.

User Guide v1

RUNNING AND MONITORING TEST - RUNTIME DASHBOARD 252

 Too many errors are received and some adjustments are required.

To terminate a running test, click Stop.

6.2.3 Monitoring Test Progress and Health

Test progress elements are located on the
toolbar and in the Test Progress Panel

Toolbar Elements:

1. The Progress bar displays the test’s
general progress status (a). A load test
typically consists of 2 main phases:

o

 Running the test by specified
time, number of iterations or
reaching maximum users.

 Waiting for iterations to
complete or issued requests
to come back.

The progress of the each of the phases is
displayed in two separate progress cycles
from 0 to 100%. The name of the phase (b) is
displayed on the left of the progress bar as
follows.

o On the first phase:

o Running steady load by time

o Running steady load by iterations

o Running step load by time

o Running step load by iterations

o Running step load to max VUs

o On the second phase:

 Waiting for responses

 Waiting for Iterations

User Guide v1

RUNNING AND MONITORING TEST - RUNTIME DASHBOARD 253

Info: The progress is also displayed in
the program’s taskbar icon as a colored
background wave.

2. The Health Monitor (c) monitors the
StresStimulus test machine and alerts when it
is approaching its capacity limit. This helps to
avoid test machine overload in order to
sustain high test accuracy. The following color
coding is used:

o

 Green: Normal. CPU
Utilization is under 85%.

 Yellow: High Load. CPU
utilization is 85-95%. Metric
accuracy can be impaired.

 Red: Overloaded. CPU
utilization exceeds 95%.
Metric accuracy will be likely
impaired. Stop unessential
processes or reduce the
number of VUs.

User Guide v1

RUNNING AND MONITORING TEST - RUNTIME DASHBOARD 254

Test Progress Panel:

3. Test progress panel display the following
parameters:

Parameter Description

Time The time elapsed from the
beginning of the test

Users The number of instantiated and
active VUs, iterating trough
their respective test cases.
Some VUs can complete the
test earlier than others and
become inactive. VUs which
completed all their iterations
before the test ends are
excluded from the active user
count. If the test is configured to
complete only after all VUs
complete their iterations, then
the VU count may go down
before the end of the test.

Iterations
Started

The number of started test
iterations

Iterations
Passed

The number of Iterations in
which all responses were
received

Iterations
Failed

The number of failed (aborted)
iterations

Requests
Sent

The number of issued requests

Requests
Pending

The number of issued requests,
for which responses are not
received yet.

Responses
OK

The number of received
responses excluded errors and
timeouts

Errors The number of errors

Timeouts The number of timeouts

User Guide v1

RUNNING AND MONITORING TEST - RUNTIME DASHBOARD 255

SQL CE
Capacity
used

(Displayed only if Data Storage
is Embedded SQL Server
CE)The percentage of the 4 GB
storage limit used to store test
data accumulated up to this
point.

If using SQL CE and your test
is reaching capacity limit, learn
how to Reduce Test Storage
Use.

Tip: Requests Sent = Requests
Pending + Responses OK + Errors +
Timeouts

Note: The test log is updated in batches with a 60-90 second delay.

Info: The full list of parameters in the test metric grids is provided in the User Interface
Reference-> Runtime Dashboard.

RUNNING AND MONITORI

6.2.4 Monitoring Performance

StresStimulus monitors various performance
parameters of the tested website in the
following categories (for more details, see
Graphing Performance Metrics

 Key performance Indicators

 Pages

 Transactions

 Test Cases

 Windows, Linux or Unix Servers

performance counters

 Load Agents performance counters

Each category is presented as a graph with
real-time performance curves showing
dynamics of monitored parameters. Multiple
curves displayed on the same gra
discovering correlation between parameters.
For example, a sharp increase in response
time coinciding with reaching a certain number
of VUs can help to discover the website’s
operational ceiling. Another example is if you
notice that your server resource utilization is
not stressed enough, you can manually
increase the number of virtual users to reach
the needed threshold for resources.

One to four panel layouts can be selected by
clicking the Layout drop-down (1). To select
which graph to display in a panel, click a drop
down (2) above it. A graph icon of the selected
graph type, will be displayed on the left of the
drop-down. Here's an example of a graph
layouts settings:

 the upper left panel displays KPI,

 the upper right panel displays server
performance counters

 the bottom left panel displays pages

 the bottom right panel displays transactions

RUNNING AND MONITORING TEST - RUNTIME DASHBOARD

Monitoring Performance

StresStimulus monitors various performance
parameters of the tested website in the
following categories (for more details, see
Graphing Performance Metrics):

Key performance Indicators

Windows, Linux or Unix Servers

Load Agents performance counters

Each category is presented as a graph with
time performance curves showing

dynamics of monitored parameters. Multiple
curves displayed on the same graph simplify
discovering correlation between parameters.
For example, a sharp increase in response
time coinciding with reaching a certain number
of VUs can help to discover the website’s
operational ceiling. Another example is if you

r resource utilization is
not stressed enough, you can manually
increase the number of virtual users to reach
the needed threshold for resources.

One to four panel layouts can be selected by
down (1). To select

which graph to display in a panel, click a drop-
down (2) above it. A graph icon of the selected
graph type, will be displayed on the left of the

down. Here's an example of a graph

ays KPI,

the upper right panel displays server

the bottom left panel displays pages

the bottom right panel displays transactions

User Guide v1

RUNTIME DASHBOARD 256

RUNNING AND MONITORI

The tab control under the graph panels allows to display several grids, including Curve grids (3),
designated with an icon, and optional

The curve grids display the following additional

Column Description

Visible Whether the curve is currently visible. Click the checkbox to
hide/unhide the curve.

Curve The name of the curve.

Color The curve color and point shape.

Range The current value
to a percent of the range.

Min Minimum value of the curve

Max Maximum value of the curve

Avg Average value of the curve

Last The last value of the curve

Warnings Number of threshold violation warnings (Sortable)

Errors Number of threshold violation error

Missed
Goals

Number of missed goals (Sortable)

Iterations The number of times this Transaction or Page was completed

successfully

Note: Not every grid has all columns.

You can sort the grid by clicking on the desired column header. Click once to sort ascending and
again to sort descending.

To see a graph's corresponding grid, select the appropriate tab.

RUNNING AND MONITORING TEST - RUNTIME DASHBOARD

The tab control under the graph panels allows to display several grids, including Curve grids (3),
esignated with an icon, and optional Agent and Test Case Progress grids

The curve grids display the following additional information about each curve:

Whether the curve is currently visible. Click the checkbox to
hide/unhide the curve.

The name of the curve.

The curve color and point shape.

The current value range. The y-value of each point corresponds
to a percent of the range.

Minimum value of the curve - datapoint aggregation (Sortable)

Maximum value of the curve - datapoint aggregation (Sortable)

Average value of the curve - datapoint aggregation (Sortable)

The last value of the curve - datapoint aggregation (Sortable)

Number of threshold violation warnings (Sortable)

Number of threshold violation errors (Sortable)

Number of missed goals (Sortable)

The number of times this Transaction or Page was completed

Note: Not every grid has all columns.

grid by clicking on the desired column header. Click once to sort ascending and

To see a graph's corresponding grid, select the appropriate tab.

User Guide v1

RUNTIME DASHBOARD 257

The tab control under the graph panels allows to display several grids, including Curve grids (3),
Agent and Test Case Progress grids (4).

information about each curve:

Tabs

Whether the curve is currently visible. Click the checkbox to All

All

All

value of each point corresponds All

(Sortable) All

(Sortable) All

(Sortable) All

(Sortable) All

KPI, Agents

KPI, Agents

Page,Transaction

The number of times this Transaction or Page was completed Page,Transaction

grid by clicking on the desired column header. Click once to sort ascending and

User Guide v1

RUNNING AND MONITORING TEST - RUNTIME DASHBOARD 258

6.2.4.1 Graphing Performance Metrics

The following real-time performance metrics is displayed in each graph

1. Key performance Indicators (KPI) monitors a fixed set of performance parameters from the
user perspective. They include:

o Users - The number of instantiated and active VUs, iterating trough their respective test
cases. Some VUs can complete the test earlier than others and become inactive. VUs
which completed all their iterations before the test end are excluded from the active user
count. If the test is configured to complete only after all VUs complete their iterations,
then the User graph will show gradual declining the number of VUs at the end of the
test.

o Req/Sec - The number of requests being sent per second.

o Avg. Response(s) - The average response time of the sent requests. Every datapoint
on the response time graph reflects the average value during the checkpoint intervals. If
no responses were received between two datapoints, the response time cannot be
determined, so such datapoints are skipped to reflect an accurate response time curve.

o KB Received/Sec - The number of bytes currently received per second.

o Errors/Sec - The number of errors currently received per second.

o Pages/Sec - The number of pages currently sent per second.

o Pending Requests - The number of currently pending requests. Pending requests are
those that are issued but the response is not yet received by StresStimulus. Generally,
the greater number of pending requests indicates slower server response. This
parameter can be used to gauge performance change in several tests runs.

2. Pages monitor an average response time of every page in the test

3. Transactions monitor an average response time of every transaction in the test case

4. Test Cases monitor an average response time of every transaction in the test case

5. Windows Servers counters monitor a set of performance parameters configured in the
Configure Test -> Monitoring -> Windows Servers Monitoring section. The counters are
collected from remote Windows servers involved in the test, including web, application and
database servers. Hundreds of different parameters, such as CPU load, memory and disk usage
can be monitored. Monitoring server metrics can help to identify potential bottlenecks limiting the
application’s performance.

6. Linux/Unix Servers counters monitor a set of performance parameters configured in the
Configure Test -> Monitoring -> Linux Unix Servers Monitoring section. The counters are
collected from the remote Linux or Unix servers involved in the test using SNMP protocol.

5. Load Agents counters monitor a set of performance parameters configured in the Configure
Test -> Monitoring -> Load Agents Monitoring section. The counters are collected from client
testing machines. This use used to make sure that the testing machines are not overloaded.

User Guide v1

RUNNING AND MONITORING TEST - RUNTIME DASHBOARD 259

The Graphs display instant performance characteristics and the performance counter's data,
plotted with the frequency defined by the Graph Sample Rate property located in the
Configure Test-> Other Options section.

6.2.4.2 Graphing Threshold Violations

During a load test execution, you can analyze violations that occur for the configured threshold
rules. Results of threshold monitoring are presented in the Runtime Dashboard and test reports on
the curve grid below the performance counter graph.

The following thresholds can be monitored:

Server and Agent performance counters (a).

 For each performance counter you can configure warning and critical threshold, as described in
the Threshold Rules section

 Exceeding the warning threshold will be displayed in the Warning column (b) in orange and the
datapoint has a yellow triangle shape (c).

 Exceeding the critical threshold will be counted in the Error column (d) in red and the datapoint
has a red cross shape (e).

Page and transaction goal misses.

User Guide v1

RUNNING AND MONITORING TEST - RUNTIME DASHBOARD 260

 If you defined a page or transaction goal, it will be monitored as a threshold. Violations are
displayed in the appropriate page or transaction curve (f)

 The counter of violations will be displayed in the Missed Goals column on the appropriate row
of the Page (g) or Transaction (h) grid.

 The datapoints with missed goal has a red cross shape (i)

User Guide v1

RUNNING AND MONITORING TEST - RUNTIME DASHBOARD 261

6.2.4.3 Graph Commands

Multiple commands are available to customize graphs and access graph information. Some of them
are located in the context menus exposed when right-click on a graph or a curve.

Graph commands

1. To zoom-in on a graph, select a time range
that you wish to zoom.

2. To zoom-out one step, click Un-Zoom One.
To remove zoom, click Un-Zoom All.

3. To stop time auto-scrolling, scroll to the left.

To resume time auto-scrolling, scroll to the
right.

4. To show hidden curves, click Unhide.

5. To maximize the graph click Maximize
Graph

6. Other commands:

o

 Copy, Save, Print Graph
Image

 Export Graph datapoints

Note: Clicking on the graph will select
the tab with the corresponding curve
grid.

Curve Commands

To access curve commands, mouse over a
curve and then right-click

1. To hide all but the selected curve, click
"Hide".

2. To hide / unhide specific curves, check
/uncheck corresponding Visible boxes in the
curve grid.

3. To unhide all curves, in the graph context

User Guide v1

RUNNING AND MONITORING TEST - RUNTIME DASHBOARD 262

menu, click Unhide All.

4. To highlight a curve, click its name in the
curve grid or mouse over it in the graph.

5. To copy or export core data, click Copy or
Export.

6.2.4.4 Grid Commands

Grid commands:

1. To select a curve grid corresponding to a graph, click the graph or click a matching tab (a).

2. To highlight the curve on the graph, click the curve row or select Highlight Curve (b).

3. To show/hide the curve on the graph, check or / uncheck a box on the corresponding row (c).

4. To show just this curve on the graph, select Hide all Curves but This (d).

5. To show all curves on the graph, select Unhide all Curves (e).

User Guide v1

RUNNING AND MONITORING TEST - RUNTIME DASHBOARD 263

6.2.4.5 Retrieving Sessions from Graphs

StresStimulus graphs allow to track down
certain performance trends on a test timeline.
For example, some sharp spikes in the
response time in certain phases of the test
become clearly visible. To fully analyze such
trends, it is important to understand the
underlying web traffic. Querying the test log
from the graphs allows to quickly retrieve web
sessions captured during such moments for
better performance diagnostic. You can also
examine test errors as they are received and
based on this information decide to continue
or to stop the test.

To retrieving sessions from graphs

1. On any graph, select a time range that you
wish to analyze. The graph will Zoom-in on the
selected time range

2. Right-click on the graph and then click
Show Sessions in Range

3. A query builder window will appear with the
Filter by time range box checked (a) and
From / To boxes to select the time range (b).

4. Configure any additional search criteria you
need. For example, to display only responses
with errors, click Errors.

The sessions will be retrieved from the test log
and displayed in the session grid.

Note: The test log is updated with a one
minute delay.

6.2.4.6 Agents and Test Cases Progress Grid

The Agent Progress tab shows a breakdown of some of these parameters between agents. This
tab is only visible when load agents are used in the test.

User Guide v1

RUNNING AND MONITORING TEST - RUNTIME DASHBOARD 264

The Test Case Progress (or TC Groups Progress) tab breaks down these parameters between
test cases. This tab is only visible when multiple test cases (or TC groups) are used in the test.

Both grids display the following columns:

Column Description

Name The Test Case or Agent Name

Users The number of active VUs

The number of active VUs Iterations Started

The number of started test iterations Iterations Ended

Iterations Ended The number of completed test iterations

Requests Sent The number of issued requests

The number of issued requests Responses Received

The number of received responses Errors

Errors The number of errors

Timeouts The number of timeouts

User Guide v1

ANALYZING RESULTS - RUNTIME DASHBOARD 265

7 ANALYZING RESULTS

Search the Analyzing Results section

A test is launched from the main tab (a). After test completion, the following steps are performed
automatically:

 A new test result is generated and saved in the test repository.

 The Runtime Dashboard tab (b) is closed.

 A new Test Result tab (c) is opened

You can open multiple Test Result tabs from the Previous Results section located on the bottom
of the Workflow Tree in the Main tab.

Note: It is not recommended to heavily use the multiple Test Result tabs during test
execution because some of the test machine hardware resources will be taken away from the
load generation.

In each Test Result tab , the following views (d) are available (i.e. Summary, Details, Graphs,
Errors). Each of them displays various aspects of website performance information in rich tabular,
graphical and text format. In any of these views, the following additional toolbar commands are
available:

 Show Sessions (e) to select HTTP sessions from the test log using multiple search criteria,
and display them in the session grid for further analysis. For more information, see Querying
Test Log

 Create Report (f) to generate a Load Test Report , a document in a portable format (HTML,
Excel, etc.) that can be distributed outside StresStimulus.

User Guide v1

ANALYZING RESULTS - OPENING PREVIOUS RESULTS 266

 Previous results (g) to navigate to the Previous Results section where other test results can
be opened.

Additionally, from a Test Result tab you can open a separate Page Result (h) and a Transaction
Result (i) tab for each webpage and transaction presenting specific performance information related
to individual pages and transactions.

7.1 Opening Previous Results

Each test run creates a separate result set stored in the storage repository. After test completion,
its result opens automatically in the Test Result tab. Each previous result can be also opened in a
separate Test Result tab.

Because StresStimulus stores all test metrics in the test repository, the result of the test that ended
previously will have the same information as test which was just completed.

To load the previous test run results:

1. Select Analyze Results in the Workflow
Tree. The list displaying the result sets of the
previous test runs will appear. Recent test
runs will be on the top.

2. Click Refresh Previous Results on the
toolbar to make sure that the displayed set of
available previous results is up-to-date

3. To load the selected Result in a new Test
Result tab, click Open Result or double-click
the Result.

Tip: To close a Test Result tab, click the
x icon on the tab or hit (Ctrl+F4)

4. You can compare multiple previous results
side-by-side in one report. Select the results to
compare by checking corresponding boxes
and clicking Compare Tests on the toolbar.
The comparison report will appear in the
browser

Additional functionality:

5. To rename the selected result, right-click,

User Guide v1

ANALYZING RESULTS - OPENING AN SQL CE FILE 267

select Rename and type a new name.

6. To change the data storage settings or the
amount of the saved data for subsequent
tests, click the Configure Result Storage
settings on the toolbar.

7. To delete previous results, select them by
checking the checkbox on the left and click
Delete on the toolbar.

8. To quickly add comments to multiple tests
after their execution, select a test and enter
comments in the Test Run Comment
property. The comments are not included in
the test results. You can also edit Test Run
Description property which is included in the
test Summary.

Info: The full list of page properties,
toolbar commands and context menu
options is provided in the User interface
reference -> Previous Results.

Tip for advanced users: By default test
result is stored in a SQL Server CE .sdf
file. You can access it directly using
Microsoft® SQL Server® 2008
Management Studio Express.

7.2 Opening an SQL CE file

In some situations it is necessary to open test result without opening the entire test. For example:

 You have a test folder containing multiple test runs, but you need to share one test run result
with a team member.

 You would like to open local test result file generated on an agent.

User Guide v1

ANALYZING RESULTS - OPENING AN SQL CE FILE 268

To open a standalone test result, from the Analyze Results section, click Import Result on the
toolbar

Open file dialog will appear. Navigate to a necessary folder and open an .sdf file.

After that, a standalone test result will appear in the analyze results section. Double-click it to open
the test report.

7.2.1 Opening Agent SQL CE file

If running a distributed test with one or more agents, while using SQL CE as
each agent and the controller will have its own SQL CE file.

 The agent's SQL CE file will contain

 The controller's SQL CE file will contain all the final results and calculations, along with replayed
sessions that the controller initiated.

It is sometimes necessary to query the replayed sessions
controller, you will get the following response in the inspector window.

To see the request/response info from a replayed session on the agent, go to the agent machine,
open StresStimulus, go to Analyze Results
be in the folder %My Documents%
The {Test Id} can be found in the {Test
node. There will be one .sdf file for every test run with the following format
Name}.sdf, so pick the one that corresponds to your test.

Note: If Test Run Name was empty then {Test File} is used.

7.3 Test Result Tab

A new Test Result tab is automatically created after the test run is complete. It can be also opened
from the Previous Results section. Several resu

Test Result tab provide reach functionality to analyze various aspects of application performance
exposed by the test and drill down layers of the stack impacting performance. The following views

ANALYZING RESULTS - TEST RESULT TAB

Opening Agent SQL CE file

If running a distributed test with one or more agents, while using SQL CE as
each agent and the controller will have its own SQL CE file.

The agent's SQL CE file will contain the replayed sessions that the agent initiated.

The controller's SQL CE file will contain all the final results and calculations, along with replayed
sessions that the controller initiated.

query the replayed sessions from an agent. If trying to do this from the
controller, you will get the following response in the inspector window.

To see the request/response info from a replayed session on the agent, go to the agent machine,
Analyze Results as described here. The .sdf file you are looking for will

%My Documents%\Fiddler2\StresStimulus\AgentTemp
The {Test Id} can be found in the {Test File}.ssconfig file in the TestModel/TestConfiguration TestId
node. There will be one .sdf file for every test run with the following format

, so pick the one that corresponds to your test.

If Test Run Name was empty then {Test File} is used.

Test Result Tab

A new Test Result tab is automatically created after the test run is complete. It can be also opened
section. Several results can be opened at the same time.

Test Result tab provide reach functionality to analyze various aspects of application performance
exposed by the test and drill down layers of the stack impacting performance. The following views

User Guide v1

TEST RESULT TAB 269

If running a distributed test with one or more agents, while using SQL CE as data storage, then

the replayed sessions that the agent initiated.

The controller's SQL CE file will contain all the final results and calculations, along with replayed

from an agent. If trying to do this from the

To see the request/response info from a replayed session on the agent, go to the agent machine,
. The .sdf file you are looking for will

AgentTemp\{Test Id}\{Test File}.
File}.ssconfig file in the TestModel/TestConfiguration TestId

node. There will be one .sdf file for every test run with the following format {Test Date}_{Test Run

A new Test Result tab is automatically created after the test run is complete. It can be also opened
lts can be opened at the same time.

Test Result tab provide reach functionality to analyze various aspects of application performance
exposed by the test and drill down layers of the stack impacting performance. The following views

User Guide v1

ANALYZING RESULTS - TEST RESULT TAB 270

of the test result that can be selected on the toolbar: Summary View, Graph View, Detail View,
Error View, VU Activity View and Waterfall View.

Tip: To switch between two last used tabs, hit Ctrl+Tab. This keyboard shortcut allows to
alternate between the two most recent tabs without using the mouse. Use it when you need
to compare results of two test runs visually.

7.3.1 Summary View

The Summary View displays key performance characteristics aggregated for the test duration. It
gives a bird’s eye view on your load test.

To select Summary View, click Summary (a) on the toolbar.

The test summary includes several subsections that can be expanded / collapsed by clicking the
triangle icon (b).

A list of the Summary View subsections is provided below:

User Guide v1

ANALYZING RESULTS - TEST RESULT TAB 271

7.3.1.1 Test Name

Test Run
Name

Optional one-word Test Run Name specified in the Configure Test section. It is
used as a suffix following a time-stamp of the test run displayed in the "Analyze
Results" section.

Test run
description

Test description specified in the Configure Test section prior to the test run

Result name The name automatically created for every test run. In SQL CE, a name of a .sdf
file.

Test File
name

The name of the test script file

Script last
modified

The timestamp of the last script modification

7.3.1.2 Test Settings

Load pattern Steady load pattern with number of VUs or step load pattern

Complete after (hh:mm:ss) The test primary and secondary completion criteria

Warm-up time (s) The warm-up time actually used in the test

7.3.1.3 Test Run Information

Start time Test start time

End time Test end time

Test run duration The test duration in seconds. [End Time] - [Start Time]

7.3.1.4 Overall Result

Completion
Status

Shows whether the test was Completed or Aborted

Pass/Fail
Status

Shows whether the test has Passed or Failed

Fail
Conditions

Shows the Failed Conditions that were violated. The following quality parameters
can be missed:

 Page Goal Misses exceeded the fail limit

User Guide v1

ANALYZING RESULTS - TEST RESULT TAB 272

 Transaction Goal Misses exceeded the fail limit

 Request Errors exceeded the fail limit

 Request Timeouts exceeded the fail limit

Max User
Load

The maximum number of VUs reached during the test. When Constant Load
Pattern is selected, it will be equal to the set number of VUs. When Step Load
Pattern is selected, it will be equal to the Max number of VUs or a smaller number
that the test duration limit permits to reach.

Total sent
(KB)

The total amounts of test upload traffic that is equal to the sum of all requests'
sizes

Total received
(KB)

The total amount of test download traffic that is equal to the sum of all responses'
sizes

KB sent/sec KB sent per second. Calculated as [Total KB sent] / [Test run duration]

KB
received/sec

KB received per second. Calculated as [Total KB received] / [Test run duration]

7.3.1.5 Test Iterations

Avg. Iteration time
(s)

The average time it took to complete an iteration. Only displayed if all
iterations were completed.

Iterations started The combined number of test iterations started by all VUs

Iterations passed The combined number of test iterations completed by all VUs

Iterations failed The combined number of failed (aborted) test iterations

Incomplete
Iterations

The difference between Iterations started and Iterations passed or failed

7.3.1.6 Requests

Avg. response
time (s)

Calculated as [Aggregate Session time] / [Total Requests].

Requests/sec The number of HTTP transactions (sessions) issued by the load test engine.
It is calculated as [Total Requests] / [Test run duration].

Number of URLs The total number of recorded URLs

User Guide v1

ANALYZING RESULTS - TEST RESULT TAB 273

Total requests
issued

The combined number of requests issued during the test

Request errors The total number of errors

Request timeouts The total number of timeouts

7.3.1.7 Transactions

Avg. response time (s) Average transaction response time.

Transactions/sec Average transactions requested per second

Number of transactions The number of transactions in the test

Requested Transactions The total number of Transactions requested in all iterations

Transactions with error(s) The number of transactions with error(s)

Requested Transactions with
error(s)

The total number of Transactions requested in all iterations with
error(s)

Transactions with timeout(s) The number of transactions with with at least one timeout
request. See Page Timeout for more details.

Requested Transactions with
timeout(s)

The total number of Transactions requested in all iterations with
timeout(s)

Transactions with missed
goal(s)

The number of transactions with missed goal

Requested Transactions with
missed goal(s)

The total number of Transactions requested in all iterations with
missed goal(s)

Slowest Transaction(s) Up to five slowest transactions. Click a transaction link to open
a transaction report

7.3.1.8 Pages

Avg. response time (s) Average page response time.

Pages/sec Average pages requested per second

Number of pages The number of pages in the test

Requested Pages The total number of pages requested in all iterations

User Guide v1

ANALYZING RESULTS - TEST RESULT TAB 274

Pages with error(s) The number of pages with error(s)

Requested Pages with
error(s)

The total number of pages requested in all iterations with error(s)

Pages with timeout(s) The number of pages with with at least one timeout request. See
Page Timeout for more details.

Requested Pages with
timeout(s)

The total number of pages requested in all iterations with timeout(s)

Pages with missed goal(s) The number of pages with missed goal

Requested Pages with
missed goal(s)

The total number of pages requested in all iterations with missed
goal(s)

Slowest Page(s) Up to five slowest pages. Click a page link to open a page report

Errors

Top
Errors

Up to five most occurring errors. Click an error link to retrieve and display all
occurrences of this error in the session grid on the left.

7.3.2 Graph View

To select Graph View, click Graphs on the toolbar.

Graph view includes in-depth graphs with load testing metrics demonstrating the performance of a
tested website. It is similar to Runtime Dashboard. It however misses several elements such as
Test Progress Panel, Agents and Test Cases Grid and UI elements for controlling the test on the
toolbar

 The layout of the Graph view is described in the Layout section.

 Performance graphs are described in the Graphing Performance Metrics section.

 Graph commands are described in the Graph Commands section.

Note: Customization changes made in the Graph View will be reflected in the Load Test
report.

 Curve grid data shown below the graphs is described in the Monitoring Performance section.
The final snapshot of the curves' data taken at the test completion is displayed.

User Guide v1

ANALYZING RESULTS - TEST RESULT TAB 275

Note: There will be some discrepancies between the values on the curve grids and the
corresponding values in the page and transaction detailed view. The Min, Max and Avg
values on the curve grids are aggregations of the data points collected during the test run.
The data points are the average values during the checkpoint intervals. Such metrics are
primarily collected for monitoring test progress and presenting performance in real time
without waiting for the final results. In contrast, the Min, Max and Avg values on the detail
views are an aggregation of the actual measurements of every occurrence of the parameter.
The detail data is calculated after the test is complete and cannot be accessed during the test
run, but presents a more complete performance picture.

You can fetch load test sessions from the test log as described in Retrieving Sessions from Graphs
section.

7.3.3 Detail View

7.3.3.1 Layout and functionality

Detail View displays the following types of tabular performance data:

 Page details

 Transaction details

 Request details

 VU details

 Test Case details

 Agent details

To select Detail View, click Details on the toolbar (a). One to four panel layouts can be selected by
clicking the Layout drop-down (b). Each panel displays a grid with a specific type of performance
data. To select which grid to display in a panel, click the drop-down (c) above it.

User Guide v1

ANALYZING RESULTS - TEST RESULT TAB 276

Tip. When you select the order in the test result detailed view, the system will remember it for
next time. Report configuration persistence helps to preserve users’ favorite settings.

To sort a grid column double-click it.

You can copy selected grid rows and paste the content into Excel. To select multiple rows, use
(CTRL + click) / (SHIFT + click) / (CTRL + A)

Several commands are available in the context menus. To access them, right-click on a grid:

User Guide v1

ANALYZING RESULTS - TEST RESULT TAB 277

 To show sessions associated with selected grid rows, Click Show Sessions (d). The sessions
will be retrieved from the test log and displayed in the session grid. The number of displayed
sessions is limited by a number entered in the Maximum Sessions box on the dialog displayed
when Show Sessions on the toolbar is clicked. Depending on the grid you selected, sessions
associated with a page, transaction, request, test case or agent can be retrieved.

 To customize grid columns; click Column Picker (e). Column Picker dialog (f) will appear.
Uncheck the columns you wish to hide. Each column description is provided in the area (g)
below. Click OK.

Note: A customization changes made in the Detail View will be reflected in the Load Test
report.

 To Auto-fit column with click Auto-fit columns.

7.3.3.2 Page Details

The Page Details panel displays performance characteristics of individual pages from the end-
user’s perspective, calculated by aggregating its requests.

Note: Page response time includes time for loading all requests. Requests loaded after the
page is displayed (e.g. AJAX requests), as determined by StresStimulus, are excluded from
the page.

Page Details Grid Columns

Column Description

The page's request number

T.C. The Test Case name

Host The host

Path The page path

Query The query string

Title The page title

Requests The number of requests

Successful The number of times this page was completed successfully

User Guide v1

ANALYZING RESULTS - TEST RESULT TAB 278

Iterations

Req. Issued The number of requests issued during all iterations

Avg. (s) The average response time

Min. (s) The minimum response time

Median (s) The median response time

90% (s) The maximum response time after excluding the slowest 10% of page
iterations

95% (s) The maximum response time after excluding the slowest 5% of page
iterations

99% (s) The maximum response time after excluding the slowest 1% of page
iterations

Max. (s) The maximum response time

STD The response time standard deviation

Goal (s) The response time goal

Missed Goals The number of iterations where the response time exceeded the goal

Errors The number of iterations with errors

Timeouts The number of iterations with timeouts

Missed Goal % % of page iterations where the response time exceeded the goal

Errors % % of page iterations with at least one error

Timeouts % % of page iterations where a timeout was registered for at least one request

HTTP Errors The total number of errors registered during all iterations

Timeouts The total number of timeouts registered during all iterations

7.3.3.3 Transaction Details

A transaction is a custom set of sequential requests or pages representing a complete business
transaction. It is used to determine performance characteristics of a specific business transaction
that includes several user actions.

The Transaction Details panel displays performance characteristics of individual transactions
(below) from the end-user perspective, calculated by aggregating its requests.

User Guide v1

ANALYZING RESULTS - TEST RESULT TAB 279

Transaction Details Grid Columns

Column Description

Transaction The Transaction name

Description The Transaction description

The transaction's first request number

T.C. The Test Case name

Requests The number of requests in the Transaction

Successful
Iterations

The number of times this Transaction was completed successfully

Req. Issued The number of requests issued during all successful and failed iterations

Avg. (s) The average response time in successful iterations. Transaction response time
is an interval between its first session's request and the latest response
received.

Min. (s) The minimum response time

Median (s) The median response time

90% (s) The maximum response time after excluding the slowest 10% of transaction
iterations

95% (s) The maximum response time after excluding the slowest 5% of transaction
iterations

99% (s) The maximum response time after excluding the slowest 1% of transaction
iterations

Max. (s) The maximum response time

STD The response time standard deviation

Goal (s) The response time goal

Missed Goals The number of iterations where the response time exceeded the goal

Errors The number of iterations with errors

Timeouts The number of iterations with timeouts

Missed Goal % % of page iterations where the response time exceeded the goal

User Guide v1

ANALYZING RESULTS - TEST RESULT TAB 280

Errors % % of transaction iterations with at least one error

Timeouts % % of transaction iterations where a timeout was registered for at least one
request

HTTP Errors The total number of errors registered during all iterations

Timeouts The total number of timeouts registered during all iterations

7.3.3.4 Request Details

The Request Details section displays aggregated performance characteristics of individual
requests grouped by URL. Time characteristics are averaged. Request counts are summed.

Note : If a request timed-out and subsequently failed, it's counted as a timeout.

Request Details Grid Columns

Column Description

The request number

T.C. The Test Case name

Host The host

Path The page path

Query The query string

Type The request's Content-Type.

Response (s) The average time to receive the response (TTLB)

TTFB (s) The average time to receive the first byte of the response

Network (s) The average time between receiving the first and the last byte of the response
necessary for transferring it over the network

Request
(KB)

The average Request Body size

Response
(KB)

The average Response Body size

User Guide v1

ANALYZING RESULTS - TEST RESULT TAB 281

Requests The number of times the request was issued during the test run

Errors The number of the request's failures during the test run

Timeouts The number of the request's timeouts registered during the test run,

Timeout (s) The timeout settings for this request

STD Response Time Standard Deviation

7.3.3.5 VU Details

The VU Details section displays statistics of the test Iterations executed by every VU.

VU Details Grid Columns

Column Description

VU The Virtual User (VU) number

Agent The Agent name

T.C. The Test Case name

Iterations Started The number of started Test Iterations

Iterations Passed The number of Iterations in which all responses were received

Iterations Failed The number of failed (aborted) iterations

Incomplete Iteration's Requests The number of requests sent in the last incomplete Iteration

Iteration Time (s) Average time (s) of a passed iteration

Requests The total number of requests sent in all Iterations

Errors The number of response errors

Timeouts The number of response timeouts

Browser The browser type used by this VU

Network The network type used by this VU

Cache Whether this VU is a new or a returned user

User Guide v1

ANALYZING RESULTS - TEST RESULT TAB 282

7.3.3.6 Test Case and TC Group Details

The Test Case Details and TC Group Details panel displays performance characteristics of test
cases / TC Group calculated by aggregating their iterations.

Test Case Grid Columns

Column Description

T.C. Test Case Name

VUs Number of users running the Test Case

Iterations Started The number of test iterations started

Iterations Passed The number of Iterations in which all responses were received

Iterations Failed The number of failed (aborted) iterations

Incomplete Iteration's Requests The number of requests sent in the last incomplete Iteration

Requests The total number of requests sent in all Iterations

Avg. (s) The average iteration time

Errors The number of response errors

Timeouts The number of response timeouts

Think time Think time settings

Test case delay Delay after the test case run

Test Case Group Grid Columns

Property Description

TC Group Test Case Group Name

VUs Number of users running the Test Case

Iterations Started The number of test iterations started

Iterations Passed The number of Iterations in which all responses were received

Iterations Failed The number of failed (aborted) iterations

Incomplete Iteration's Requests The number of requests sent in the last incomplete Iteration

User Guide v1

ANALYZING RESULTS - TEST RESULT TAB 283

Requests The total number of requests sent in all Iterations

Avg. (s) The average iteration time

Errors The number of response errors

Timeouts The number of response timeouts

Think time Think time settings

Test case delay Delay after the test case settings

7.3.3.7 Agent Details

The Agent Details panel displays statistics and performance characteristics aggregated by the
agent.

Agent Details Grid Columns

Column Description

Agent Load Agent name

Start Test start time

End Test end time

Aggregate
(s)

Aggregate Session Time, the sum of all session response times. The session
duration is the time between when a request is sent and the corresponding
response is received.

Because sessions are occurring in parallel, the Aggregate Session Time
substantially exceeds the clock time.

Max VUs The maximum number of VUs, reached during the test run

Sent (KB) The sum of all requests sizes

Received
(KB)

The sum of all responses sizes

Sent (KB/s) Average upload bandwidth [Total KB sent] / [Test run duration]

Received
(KB/s)

Average download bandwidth [Total KB sent] / [Test run duration]

Errors The number of responses with status codes in the 400s or 500s range, or where a
custom error was registered

User Guide v1

ANALYZING RESULTS - TEST RESULT TAB 284

Iterations
Started

The number of test iterations started

Iterations
Passed

The number of Iterations in which all responses were received

Iterations
Failed

The number of failed (aborted) iterations

Iteration
Time (s)

Average Iterations duration

Requests The number of requests issued during the test run

Request /sec Request rate [Total Requests] / [Test run duration]

Response (s) Average Response time [Aggregate Session time] / [Total Requests]

7.3.4 Error View

To select Error View, click Error on the toolbar (a).

User Guide v1

ANALYZING RESULTS - TEST RESULT TAB 285

Every request issued during the load test receives one or three flags: Passed, Failed with Error and
Failed with Timeout which is determined as follows:

1.

a. Failed with Error: The response came back before a given timeout, but it violated a
custom validator's criteria or has a failing code of 400 and above.

b. Failed with Timeout: The corresponding response did not come back before a given
timeout.

c. Passed: None of the above. This request is considered successful.

Error View displays responses with errors and timeouts. A panel shows information about failed
request instances grouped by a Test Case (b) and a request number (c). Below is the example
displaying 19 errors of the request # 38 in the TC Group 1. This request failed 8 times during
iteration 1 and 11 times during iteration 2. Failing users are displayed in the VU column (d). To view

User Guide v1

ANALYZING RESULTS - TEST RESULT TAB 286

the selected error, double-click it or right-click on a grid and click Show Sessions (e). The sessions
will be retrieved from the test log and displayed in the session grid.

For quick error analysis, select a row, right-click and select Compare with Recorded (f). The
system will determine which user in which iteration encountered this error and then will display a
tree which compares all replayed sessions for this user's iteration with the recorded sessions. This
can help to discover preceding and subsequent errors and find out the root cause of the error
faster. Another troubleshooting option is in the error view is right-click on the error and select See
Waterfall (g) for this VU iteration.

7.3.4.1 Error Details Grid Columns

Column Description

The request number

Agent The Agent name

Iteration The Iteration number

VU The Virtual User (VU) number

T.C. The Test Case name

URL The URL

Description The error description

7.3.5 VU Activity View

The VU Activity Chart shows the activity of
every VU associated with the
allows to visualize the VU activity and how it
relates to other VUs actions. Specifically, it
shows which test case and iteration each VU
was executing, on which load generator it was
emulated and what other VUs were executing
at the same time. Because this information is
depicted on the timeline, it helps to isolate
performance issues by seeing how load
patterns and test case concurrences correlate
with slower test iterations. You can further drill
down every test iteration to display a water
chart corresponding to this iteration which
displays activity detailed on the level of
individual pages and requests.

Info: The VU Activity Chart is available
only after the load after has finished
running.

The example of VU Activity chart is provi
on the right:

 Vertical axle shows VUs (a).

 VUs 1-250 were emulated on a controller
(b); VUs 251-500 were emulated on the
agent (c).

 Horizontal axle (d) is the timeline. Test
duration was a little longer than one hour.

 During the first 22 minutes, both,
controller and the agent, where ramping up
VUs to the full capacity of 250 VUs each
(e).

 To zoom-in to a specific VUs/Iterations
range, select an appropriate rectangular
area (f).

 Each VU is depicted by a set of horizontal
bars, each of which represen

ANALYZING RESULTS - TEST RESULT TAB

VU Activity View

The VU Activity Chart shows the activity of
every VU associated with the load test. It
allows to visualize the VU activity and how it
relates to other VUs actions. Specifically, it
shows which test case and iteration each VU
was executing, on which load generator it was
emulated and what other VUs were executing

e. Because this information is
depicted on the timeline, it helps to isolate
performance issues by seeing how load
patterns and test case concurrences correlate
with slower test iterations. You can further drill
down every test iteration to display a waterfall
chart corresponding to this iteration which
displays activity detailed on the level of
individual pages and requests.

The VU Activity Chart is available
only after the load after has finished

The example of VU Activity chart is provided

Vertical axle shows VUs (a).

250 were emulated on a controller
500 were emulated on the

Horizontal axle (d) is the timeline. Test
duration was a little longer than one hour.

During the first 22 minutes, both, the
controller and the agent, where ramping up
VUs to the full capacity of 250 VUs each

in to a specific VUs/Iterations
range, select an appropriate rectangular

Each VU is depicted by a set of horizontal
bars, each of which represents single test

User Guide v1

TEST RESULT TAB 287

User Guide v1

ANALYZING RESULTS - TEST RESULT TAB 288

iteration.

 The length of a bar indicates how long it
took to complete the iteration. Breaks
between the bars (g) represent delays after
the test cases.

 The bars are color-coded. Each test case is
assigned two unique colors. One of them is
used for even iterations (h) and another one
is used for odd iterations (i) (alternate
coloring). For example, VU 251 and 256 (j)
executed the same test case. Also, areas 1,
2 and 3 display how the first three iterations
where executed by VUs at different times.

 To display details of each test iteration,
mouse over its bar. The tooltip (k) will
display the following information:

o VU number

o Iteration number

o Iteration start and end time

o Iteration duration

o Agent name

o Test case name

Generating Test Iteration Waterfall

 To display a waterfall of an iteration, Dbl-
Click its horizontal bar, or right-click (l) and
select View Waterfall.

 You can compare waterfalls of two
iterations. To do so, after selecting the first
waterfall, navigate back to VU Activity view
and Ctrl+Dbl-Click the second iteration bar,
or right-click it (l) and select Compare
Waterfalls.

Other Commands:

 To zoom-out, right-click (m) and select Un-
Zoom.

 For additional context menu commands,
right-click and select Copy Image, Save
Image or Print Graph Image.

7.3.6 Waterfall View

One of the most effective tools for evaluating the performance
a webpage is a Waterfall chart. It depicts a timeline diagram of requesting a
resources . Waterfall charts are broadly used by performance engineers to granularly analyze
factors impacting page responsiveness. It gives full visibility into every single piece of content that
is downloaded from the server. Not only
sequence on the timeline with indication when every request was issued and when every response
was received. As a result, the duration of each load is clearly visualized in the context of other
activities on the page. This allows to easily pinpoint bottlenecks on slow webpages.

In StresStimulus, waterfall charts are extended beyond analyzing a single page and single user
experience. You can analyze two waterfall charts of a test iteration, page or
side in conjunction with KPI of a website with given load. Each of charts depicts a timeline of
loading the iteration / page / transaction by any VU during any iteration of a load test.

This provides the following benefits:

1. Helps to visualize the impact of different levels of the server load on individual requests and
overall user experience.

Example: in a load test with user ramp
(light load) and on the last iteration (heavy
load. Recognize if load-related delays are in the server processing or on the network side.

2. Helps to better understand and or audit result of a load test.

Example: on a load test report, a page response time seems to be too high. To clarify this issue,
analyze waterfall charts to determine on which processes most of the response time was spent.
Such analysis can rectify incorrect expectation and provide the insight to the web system

3. Helps to better evaluate application scalability and isolate bottlenecks.

ANALYZING RESULTS - TEST RESULT TAB

Waterfall View

One of the most effective tools for evaluating the performance-related user experience of accessing
a webpage is a Waterfall chart. It depicts a timeline diagram of requesting a
resources . Waterfall charts are broadly used by performance engineers to granularly analyze
factors impacting page responsiveness. It gives full visibility into every single piece of content that
is downloaded from the server. Not only does it present all the resources, but it shows them in
sequence on the timeline with indication when every request was issued and when every response
was received. As a result, the duration of each load is clearly visualized in the context of other

ities on the page. This allows to easily pinpoint bottlenecks on slow webpages.

In StresStimulus, waterfall charts are extended beyond analyzing a single page and single user
experience. You can analyze two waterfall charts of a test iteration, page or
side in conjunction with KPI of a website with given load. Each of charts depicts a timeline of
loading the iteration / page / transaction by any VU during any iteration of a load test.

This provides the following benefits:

visualize the impact of different levels of the server load on individual requests and

: in a load test with user ramp-up, compare waterfall chart for VU1 on the first iteration
(light load) and on the last iteration (heavy load). Determine which requests are affected by a higher

related delays are in the server processing or on the network side.

2. Helps to better understand and or audit result of a load test.

port, a page response time seems to be too high. To clarify this issue,
analyze waterfall charts to determine on which processes most of the response time was spent.
Such analysis can rectify incorrect expectation and provide the insight to the web system

3. Helps to better evaluate application scalability and isolate bottlenecks.

User Guide v1

TEST RESULT TAB 289

related user experience of accessing
a webpage is a Waterfall chart. It depicts a timeline diagram of requesting and loading page
resources . Waterfall charts are broadly used by performance engineers to granularly analyze
factors impacting page responsiveness. It gives full visibility into every single piece of content that

does it present all the resources, but it shows them in
sequence on the timeline with indication when every request was issued and when every response
was received. As a result, the duration of each load is clearly visualized in the context of other

ities on the page. This allows to easily pinpoint bottlenecks on slow webpages.

In StresStimulus, waterfall charts are extended beyond analyzing a single page and single user
experience. You can analyze two waterfall charts of a test iteration, page or transaction side-by-
side in conjunction with KPI of a website with given load. Each of charts depicts a timeline of
loading the iteration / page / transaction by any VU during any iteration of a load test.

visualize the impact of different levels of the server load on individual requests and

up, compare waterfall chart for VU1 on the first iteration
load). Determine which requests are affected by a higher

related delays are in the server processing or on the network side.

port, a page response time seems to be too high. To clarify this issue,
analyze waterfall charts to determine on which processes most of the response time was spent.
Such analysis can rectify incorrect expectation and provide the insight to the web system behavior.

User Guide v1

ANALYZING RESULTS - TEST RESULT TAB 290

Example: a load test report indicated that a transaction becomes slow when a certain load level is
reached. To further narrow down the problem area, analyze the transaction waterfall to determine a
processes or request causing the most delays.

The waterfall view of the test result displays all requests in a test iteration. Page and transaction
sub reports described in the Page and Transaction Result Tab section also have waterfall views
which display fewer requests, limited to a single page or transaction, but otherwise are very similar
to the test result waterfalls. A description of waterfall charts provided in the subsequent pages of
this section applies for test, page and transaction waterfalls.

7.3.6.1 Single Waterfall Chart

To select Waterfall View, click Waterfall (a) on
the toolbar.

By default, Waterfall includes one panel (b) to
displays a chart for a selected VU (c) and
iteration (d).

On the chart, the vertical axle (e) displays
requests, and horizontal axle (f) displays the
timeline.

Request bars depict with green horizontal
area (g) representing server time and a blue
area (h) representing network time.

To display request details, mouse over its bar.
It turns yellow (i) and a tool-tip displays the
request name and the following timing
information:

 Start - the time of issued the request

 TTFB - the time of receiving the first byte

 TTLB - the time of receiving the last byte

 End - the time when the resource was
downloaded

All times are measured from the moment of
issuing the first request in the page /
transaction.

To access the content of this request, double-
click it and a session inspector will open in a

User Guide v1

ANALYZING RESULTS - TEST RESULT TAB 291

new tab (j) (see Inspecting Sessions).

To evaluate positioning of request/response
events of page/transaction resources on the
timeline, click the appropriate point in the
graph panel and a vertical and horizontal red
line (k) crossing this point will appear.

Session errors and timeouts are also color-
coded (l). Sessions with an error or timeout
are displayed as orange bar. The tool-tip
displayed on mouse over displays its error or
time out status (m).

To identify a specific request, look for its
request URL or a session number (n).

To put the waterfall in the context of the load test, a key performance indicator snapshot (l) taken
during the time of the waterfall is displayed on the bottom. it includes the following parametersStart,
End - waterfall beginning and ending timestamps on the test timeline.

 Start, End - waterfall beginning and ending timestamps on the test timeline.

 Agent - The name of the Agent where the waterfall was captured.

 Users - The number of instantiated and active VUs, iterating trough their respective test cases.
Some VUs can complete the test earlier than others and become inactive. VUs which
completed all their iterations before the test end are excluded from the active user count. If the
test is configured to complete only after all VUs complete their iterations, then the User graph
will show gradual declining the number of VUs at the end of the test.

 Req/Sec - The average number of requests being sent per second.

 Avg. Response(s) - The average response time of the sent requests. Every datapoint on the
response time graph reflects the average value during the checkpoint intervals. If no
responses were received between two datapoints, the response time cannot be determined,
so such datapoints are skipped to reflect an accurate response time curve.

 KB Received/Sec - The average number of bytes received per second.

 Pending Requests - The average number of pending requests. Pending requests are those
that are issued but the response is not yet received by StresStimulus. Generally, the greater
number of pending requests indicates slower server response. This parameter can be used to
gauge performance change in several tests runs.

To select a different VU / iteration, adjust information i
Sometimes, you may also need to click the Refresh button (m).

Note: In order to generate a waterfall chart, session content must be saved in storage
accessible from the controller. This information is available in tests that ran from the
controller without agents . In
information is also available on the controller. However, in distributed tests with SQL Server
CE-based storage, the sessions initiated on the agents are stored on the agents. You still can
create waterfall chart on the controller, if
Test -> Test Result Storage
replicating necessary data from the agents to the controller.

7.3.6.2 Waterfall Chart Commands

Several commands are available to customize
waterfall charts:Zoom / Un-Zoom

 To zoom-in on a graph, select a rectangular
area (a) where you wish to zoom.
and horizontal scroll-bars (b) will appear.

 For additional zooming, select a rectangular
area again.

 To undo to last zoom, click the minus icon
on the scroll bars (b).

 To completely remove zoom, right
select Un-Zoom (c).

Diagonal Scrolling

Because a waterfall has a "diagonal" shape,
vertical scrolling can move all request bars
outside the visible area of the chart. To bring
them back, additional horizontal scrolling is
necessary which complicates this operation.

To solve this issue, the ratio of horizontal
scrolling to vertical scrolling is set, so the
request bars are always visible. This method
is called Diagonal Scrolling.

To turn Diagonal Scrolling off, right
un-check the Diagonal Scrolling box (d).
commands (e):

 Copy Image

 Save Image as

ANALYZING RESULTS - TEST RESULT TAB

To select a different VU / iteration, adjust information in the numeric text boxes (c) and (d).
Sometimes, you may also need to click the Refresh button (m).

In order to generate a waterfall chart, session content must be saved in storage
accessible from the controller. This information is available in tests that ran from the
controller without agents . In distributed tests , when SQL Server is used as
information is also available on the controller. However, in distributed tests with SQL Server

storage, the sessions initiated on the agents are stored on the agents. You still can
create waterfall chart on the controller, if Save sessions from agents property in

Test Result Storage section is set to Yes (default), because this set
replicating necessary data from the agents to the controller.

Waterfall Chart Commands

Several commands are available to customize
Zoom

in on a graph, select a rectangular
area (a) where you wish to zoom. Vertical

bars (b) will appear.

For additional zooming, select a rectangular

To undo to last zoom, click the minus icon

To completely remove zoom, right-click and

Because a waterfall has a "diagonal" shape,
vertical scrolling can move all request bars
outside the visible area of the chart. To bring
them back, additional horizontal scrolling is
necessary which complicates this operation.

, the ratio of horizontal
scrolling to vertical scrolling is set, so the
request bars are always visible. This method

To turn Diagonal Scrolling off, right-click and
check the Diagonal Scrolling box (d).Other

User Guide v1

TEST RESULT TAB 292

n the numeric text boxes (c) and (d).

In order to generate a waterfall chart, session content must be saved in storage
accessible from the controller. This information is available in tests that ran from the

, when SQL Server is used as storage, this
information is also available on the controller. However, in distributed tests with SQL Server

storage, the sessions initiated on the agents are stored on the agents. You still can
property in Configure

(default), because this setting will force

User Guide v1

ANALYZING RESULTS - TEST RESULT TAB 293

 Print Graph

7.3.6.3 Dual Waterfall Chart

Two charts can be displayed side-by-side to
compare waterfalls of any two VUs during
selected iterations.

To turn-on the dual Waterfall view, check the
Compare box (a) on the toolbar. The 2nd pair
of numeric text boxes (b) will appear. Select
the 2nd VU / Iteration. The second panel (c)
with the graph will appear on the right.

Note: Sometimes you need to click
Refresh (d) on the toolbar after you
change a VU or iteration.

The initial timeline of the two charts has the
same scale for easier comparison. Example
on the figure: transactions on the left and
right charts completed in 0.7 and 5.48
seconds respectively. Both charts will display
a 5.48 seconds timeline.

A snapshot of KPI of the time of the page /
transaction request will be displayed below
each waterfalls (e). For example in the figure:

 the left waterfall took place when an
application under the test was accessed by
2 users with hit rate 14.92 req/sec

 the right waterfall took place when an
application under the test was accessed by
12 users with hit rate 35.6 req/sec

To swap the charts, click the Swap button (f)
on the toolbar.

Auto-Synch mode

By default, the scrolling and zooming in the charts
scroll either of the charts, the opposite chart will automatically keep the same vertical zoom / scroll
position, so the corresponding requests in both charts are always aligned.

To turn Auto-Synch mode off, un
check the Auto-Synch box (h). After that, you can zoom and scroll charts independently.

7.3.7 Finding Hidden Errors

Depending on the application, in some cases, the application starts returning HTTP
response when the server load gets too high. For example, with too many concurrent requests, the
application's database begins throwing connection timeout errors.

Usually, HTTP errors have an error response code, such as 500. In this case S
report this response as an error. However, in some instances, the response code is 200 (means an
successful response) and the response body has some error text. In this case, StresStimulus will
not be able to determine this response as an

In order to expose these hidden errors, you can compare a replayed iteration with the recorded te
case. There are two ways of doing that:

1. Open the VU Activity View
Right click and select Compare With Recorded (c).

ANALYZING RESULTS - TEST RESULT TAB

By default, the scrolling and zooming in the charts is synchronized. When you zoom or vertically
scroll either of the charts, the opposite chart will automatically keep the same vertical zoom / scroll
position, so the corresponding requests in both charts are always aligned.

Synch mode off, un-check the Auto-Synch on the toolbar (g) or right
Synch box (h). After that, you can zoom and scroll charts independently.

Finding Hidden Errors

Depending on the application, in some cases, the application starts returning HTTP
response when the server load gets too high. For example, with too many concurrent requests, the
application's database begins throwing connection timeout errors.

Usually, HTTP errors have an error response code, such as 500. In this case S
report this response as an error. However, in some instances, the response code is 200 (means an
successful response) and the response body has some error text. In this case, StresStimulus will
not be able to determine this response as an error and therefore it is considered as a hidden error.

In order to expose these hidden errors, you can compare a replayed iteration with the recorded te
case. There are two ways of doing that:

ivity View (a) and right click on the desired VU and Iteration (b) to investigate.
Right click and select Compare With Recorded (c).

User Guide v1

TEST RESULT TAB 294

is synchronized. When you zoom or vertically
scroll either of the charts, the opposite chart will automatically keep the same vertical zoom / scroll

Synch on the toolbar (g) or right-click and un-
Synch box (h). After that, you can zoom and scroll charts independently.

Depending on the application, in some cases, the application starts returning HTTP errors in the
response when the server load gets too high. For example, with too many concurrent requests, the

Usually, HTTP errors have an error response code, such as 500. In this case StresStimulus will
report this response as an error. However, in some instances, the response code is 200 (means an
successful response) and the response body has some error text. In this case, StresStimulus will

error and therefore it is considered as a hidden error.

In order to expose these hidden errors, you can compare a replayed iteration with the recorded test

(a) and right click on the desired VU and Iteration (b) to investigate.

User Guide v1

ANALYZING RESULTS - TEST RESULT TAB 295

2. Open the Waterfall chart (d) and select the desired VU (e) and Iteration (f) to investigate. Right
click and select Compare With Recorded (g).

User Guide v1

ANALYZING RESULTS - TEST RESULT TAB 296

In either case. a verification tree (h) that shows a comparison report between the recorded and
replayed iteration will open. It is similar to verification.

User Guide v1

ANALYZING RESULTS - PAGE AND TRANSACTION RESULT TAB 297

7.4 Page and Transaction Result Tab

Page Result (a) and Transaction Result (b) tabs
display performance characteristics of a single
page or a transaction registered during a
particular test run. You can open these tabs
from the Test Result tab (c) in one of 3 ways:

1. Page Details grid (d) and Transaction Details
grid (e), located in the Detail view (f) on the
Test Result tab, display hyperlinks to all
pages (g) and transactions (h). Click a
hyperlink to open the corresponding Page
Result or Transaction Result tab.

User Guide v1

ANALYZING RESULTS - PAGE AND TRANSACTION RESULT TAB 298

2. Summary view (i) on the Test Result tab
displays hyperlinks to up to 5 slowest pages (j)
and up to 5 slowest transactions (k). Click a
hyperlink to open a Page Result or Transaction
Result tab.

3. Page section (l) and Transaction section of
the Curve Grid located in the Graph View (m)
displays links (n) to all pages and transactions.
Click a hyperlink to open the corresponding
Page Result or Transaction Result tab.

The following views (o) can be selected on the
toolbar:

 Summary View

 Performance View

 Latency View

 Failure View

 Failure % View

 Requests View

 Waterfall View

To go back to the Test Result, click Back (p).

User Guide v1

ANALYZING RESULTS - PAGE AND TRANSACTION RESULT TAB 299

To retrieve page or transaction sessions from
the test log, click Show Session (q) on the
toolbar. The Query Log dialogue with pre-
populated session range and the test case, will
open. Click Show Session. Session grid will
display the result,

7.4.1 Summary View

Summary view lists page or transaction basic performance metrics and failures. To select Summary
View, click Summary on the toolbar.

The Summary includes several subsections that can be expanded / collapsed by clicking the
triangle icon.

7.4.1.1 General

Result name Optional one-word Test Run Name specified in the Configure Test section. It is
used as a suffix following a time-stamp of the test run displayed in the "Analyze
Results" section.

Test run
description

Test description specified in the Configure Test section prior to the test run.

Test File name The name of the test script file

Start time Test start time

Name The page or transaction name

Description The page or transaction description

Test Case The test case name

Number of
URLs

The number of recorded URLs in the page or transaction

Title The page title

Host The host

Path The page path

User Guide v1

ANALYZING RESULTS - PAGE AND TRANSACTION RESULT TAB 300

Query The query string

7.4.1.2 Performance Metrics

Iterations The number of page or transaction iterations started

Requests The number of requests in the page or transaction

Avg. response time
(s)

The average response time (s)

Min. Response (s) The minimum response time

Median Response (s) The median response time

Max. Response (s) The maximum response time

Std. Dev. The response time standard deviation

Fastest 90% (s) The maximum response time after excluding the slowest 10% of page
iterations

Fastest 95% (s) The maximum response time after excluding the slowest 5% of page
iterations

Fastest 99% (s) The maximum response time after excluding the slowest 1% of page
iterations

7.4.1.3 Failures

Goal (s) The page or transaction response time goal

Missed Goals The number of iterations where the response time exceeded the goal

Errors The number of iterations with errors

Timeouts The number of iterations with timeouts

Missed Goals % % of iterations where the response time exceeded the goal

Errors % % of iterations with errors

Timeouts % % of iterations with timeouts

Error requests The number of error requests registered during all iterations

Timeout requests The number of timeout requests registered during all iterations

ANALYZING RESULTS

7.4.1.4 Screenshot

Displays the page screenshot if it is exis

7.4.2 Performance View

Performance view presents a page or a transaction response timeline and its changes, depending
on the number of emulated VUs. It features 5 curves: minimum, average and maximum response
time, goal and number of VUs.

ANALYZING RESULTS - PAGE AND TRANSACTION

Displays the page screenshot if it is exists.

Performance View

Performance view presents a page or a transaction response timeline and its changes, depending
on the number of emulated VUs. It features 5 curves: minimum, average and maximum response
time, goal and number of VUs.

User Guide v1

PAGE AND TRANSACTION RESULT TAB 301

Performance view presents a page or a transaction response timeline and its changes, depending
on the number of emulated VUs. It features 5 curves: minimum, average and maximum response

User Guide v1

ANALYZING RESULTS - PAGE AND TRANSACTION RESULT TAB 302

Performance view graph helps to analyze scalability and to determine how many virtual users the
page or transaction can handle. For example, to determine how many users can be handled to
meet the goal of 5 seconds in at least 50% cases, follow these steps:

1. Find an approximate point of intersection of Avg. Response Time curve (green) and Goal curve
(navy blue).

2. Mouse over it to determine its timestamp (04:20)

3. Find a point with the same timestamp on the Users curve (blue) and note the number of users
reached this point (52)

User Guide v1

ANALYZING RESULTS - PAGE AND TRANSACTION RESULT TAB 303

This page can handle 52 concurrent users to meet the page response goal of 5 seconds in at least
50% cases.

7.4.2.1 Graph Context Menu

Multiple commands are available to customize graphs and access graph information. Some of them
are located in the context menus exposed when right-click on a graph or a curve.

Graph commands

1. To zoom-in on a graph, select a time range
that you wish to zoom.

2. To zoom-out one step, click Un-Zoom One.
To remove zoom, click Un-Zoom All.

3. To stop time auto-scrolling, scroll to the left.

To resume time auto-scrolling, scroll to the
right.

4. To show hidden curves, click Unhide.

5. Other commands:

o

 Copy, Save, Print Graph
Image

 Export Graph datapoints

7.4.2.2 Graph Curve Context Menu

Multiple commands are available to customize graphs and access graph information. Some of them
are located in the context menus exposed when right-click on a graph or a curve.

Curve Commands

To access curve commands, mouse over a
curve and then right-click

1. To hide all but the selected curve, click
"Hide".

2. To hide / unhide specific curves, check
/uncheck corresponding Visible boxes in the
curve grid.

3. To unhide all curves, in the graph context
menu, click Unhide All.

ANALYZING RESULTS

4. To highlight a curve, click its name in the
curve grid or mouse over it in

5. To copy or export core data, click Copy or
Export.

7.4.3 Latency View

Latency view presents a page or transaction
response time breakdown between Latency
and Server Time. The latency (or network
time) is a portion of the response time
attributed to the network delays, necessary for
server responses to reach the client.

It depends on several factors, such as the
response size, network bandwidth, server and
client global and network positioning on the
Internet. Latency view graph displays
following elements:

a) Latency area

b) Server Time area

c) Total response time = Server Time
+Latency

d) User curve

In slow pages and transactions, the total
response time breakdown helps to determine
whether the slowness is caused by the server
processing or by the network latency.
Resolving each of these two bottlenecks
entails very different performance engineering
steps. To address high latency consider the
following measures:

 Decrease server response size by
optimizing the application and / or us
compression.

 Reduce the number of network round

 Increase network bandwidth.

 Move the server geographically closer to
the clients use CDN.

ANALYZING RESULTS - PAGE AND TRANSACTION

4. To highlight a curve, click its name in the
curve grid or mouse over it in the graph.

5. To copy or export core data, click Copy or

Latency View

Latency view presents a page or transaction
response time breakdown between Latency
and Server Time. The latency (or network
time) is a portion of the response time
attributed to the network delays, necessary for
server responses to reach the client.

It depends on several factors, such as the
response size, network bandwidth, server and
client global and network positioning on the
Internet. Latency view graph displays the

c) Total response time = Server Time

In slow pages and transactions, the total
response time breakdown helps to determine
whether the slowness is caused by the server

essing or by the network latency.
Resolving each of these two bottlenecks
entails very different performance engineering
steps. To address high latency consider the

Decrease server response size by
optimizing the application and / or using

Reduce the number of network round-trips.

Increase network bandwidth.

Move the server geographically closer to

User Guide v1

AGE AND TRANSACTION RESULT TAB 304

ANALYZING RESULTS

 Use client caching.

7.4.4 Failure View

Failure and Failure % view presents a page or a transaction failure
changes depending on the number of emulated VUs. Four curves are displayed: errors, timeouts,
users and missed goals. This view can be used to answer many performance related questions
regarding quality of service as a function o

Failure view’s graph helps to analyze scalability and to determine how many virtual users the page
or transaction can handle.

ANALYZING RESULTS - PAGE AND TRANSACTION

Failure View

Failure and Failure % view presents a page or a transaction failure rate on a timeline and its
changes depending on the number of emulated VUs. Four curves are displayed: errors, timeouts,
users and missed goals. This view can be used to answer many performance related questions
regarding quality of service as a function of load.

Failure view’s graph helps to analyze scalability and to determine how many virtual users the page

User Guide v1

PAGE AND TRANSACTION RESULT TAB 305

rate on a timeline and its
changes depending on the number of emulated VUs. Four curves are displayed: errors, timeouts,
users and missed goals. This view can be used to answer many performance related questions

Failure view’s graph helps to analyze scalability and to determine how many virtual users the page

User Guide v1

ANALYZING RESULTS - PAGE AND TRANSACTION RESULT TAB 306

For example, to determine how many users can be handled to meet the response time goal in at
least 75% cases, follow these steps:

1. Find an approximate point of intersection of Missed Goal curve (navy blue) and 25% failure
rate.

2. Mouse over it to determine its timestamp (01:30)

3. Find a point with the same timestamp on the Users curve (blue) and note the number of users
reached this point (18)

This page can handle 18 concurrent users to meet page response call it, at least 75% cases.

Note: Failure view is available only if a page or transaction has at least one error, timeout, or
missed goal occurrence.

7.4.5 Request View

The Request View displays aggregated performance characteristics of each request related to a
page or transaction in tabular form. Time characteristics are averaged. Request counts are
summed.

Note : If a request timed-out and subsequently failed, it's counted as a timeout.

7.4.5.1 Request Grid Columns

Column Description

The request number

T.C. The Test Case name

Host The host

Path The page path

Query The query string

Type The request's Content-Type.

Response (s) The average time to receive the response (TTLB)

STD Response Time Standard Deviation

ANALYZING RESULTS

TTFB (s) The average time to receive the first byte of the response

Network (s) The average time between receiving the first and the last byte of the response
necessary for transferring it over the network

Request
(KB)

The average Request Body size

Response
(KB)

The average Response Body size

Requests The number of times the request was issued during the test run

Errors The number of the request's failures during the test run

Timeouts The number of the

Timeout (s) The timeout settings for this request

7.4.6 VU Activity View

The VU Activity Chart for a page or a
transaction shows on the test timeline which
VUs requested the page or executed the
transaction on different test iteration. It also
shows on which agent it was emulated.

The VU Activity Chart helps to isolate
performance issues by showing how load
patterns and VUs concurrences correlate
with slow pages / transactions. You can
further drill down every page / transaction to
display its waterfall, which breaks it down to
the level of individual requests.

An example of a transaction VU Activity
chart is provided on the right:

 Vertical axle shows VUs (a).

 VUs 1-250 were emulated on a controller
(b); VUs 251-500 were emulated on the
agent (c).

 Horizontal axle (d) is the timeline. Test

ANALYZING RESULTS - PAGE AND TRANSACTION

The average time to receive the first byte of the response

The average time between receiving the first and the last byte of the response
necessary for transferring it over the network

The average Request Body size

The average Response Body size

The number of times the request was issued during the test run

The number of the request's failures during the test run

The number of the request's timeouts registered during the test run,

The timeout settings for this request

VU Activity View

The VU Activity Chart for a page or a
transaction shows on the test timeline which
VUs requested the page or executed the

on different test iteration. It also
shows on which agent it was emulated.

The VU Activity Chart helps to isolate
performance issues by showing how load
patterns and VUs concurrences correlate
with slow pages / transactions. You can

ry page / transaction to
display its waterfall, which breaks it down to
the level of individual requests.

An example of a transaction VU Activity
chart is provided on the right:

Vertical axle shows VUs (a).

250 were emulated on a controller
500 were emulated on the

Horizontal axle (d) is the timeline. Test

User Guide v1

PAGE AND TRANSACTION RESULT TAB 307

The average time between receiving the first and the last byte of the response

The number of times the request was issued during the test run

request's timeouts registered during the test run,

User Guide v1

ANALYZING RESULTS - PAGE AND TRANSACTION RESULT TAB 308

duration was a little longer than one hour.

 To zoom-in to a specific VUs/Iterations
range, select an appropriate rectangular
area (e).

 Each page or transaction associated with
a VU is depicted by a sequence of
horizontal bars colored to highlight the
alternate iterations: iterations, 1,3,5... are
dark green (f); 2.4.6... are light green (g).

 The length indicates how long it took to
complete the page or transaction on this
iteration.

 To display details of each page
/transaction, mouse over its bar (h). The
tooltip (i) will display the following
information:

o VU number

o Iteration number

o Iteration start and end time

o Page/transaction duration

o Agent name

o Test case name

Generating Test Iteration Waterfall

 To display a waterfall of a
page/transaction, Dbl-Click its horizontal
bar, or right-click (j) and select View
Waterfall.

 You can compare waterfalls of two
iterations. To do so, after selecting the
first waterfall, navigate back to VU
Activity view and Ctrl+Dbl-Click the
second iteration bar, or right-click it and
select Compare Waterfalls.

Other Commands:

 To zoom-out, right-click (k) and select Un-

ANALYZING RESULTS

Zoom.

 For additional context menu commands,
right-click and select Copy Image, Save
Image or Print Graph Image.

7.4.7 Waterfall View

Waterfall View in page or transaction sub report, as compared to Waterfall View in a test result,
displays fewer requests, limited to a single page or transaction, but otherwise they are very similar.
Waterfall View in a test result is described in the
section.

This section applies for test, page and transaction waterfalls.

ANALYZING RESULTS - PAGE AND TRANSACTION R

For additional context menu commands,
Copy Image, Save

Print Graph Image.

Waterfall View

Waterfall View in page or transaction sub report, as compared to Waterfall View in a test result,
displays fewer requests, limited to a single page or transaction, but otherwise they are very similar.
Waterfall View in a test result is described in the Waterfall View subsection of the

This section applies for test, page and transaction waterfalls.

User Guide v1

GE AND TRANSACTION RESULT TAB 309

Waterfall View in page or transaction sub report, as compared to Waterfall View in a test result,
displays fewer requests, limited to a single page or transaction, but otherwise they are very similar.

subsection of the Test Result Tab

User Guide v1

ANALYZING RESULTS - QUERYING TEST LOG 310

7.5 Querying Test Log

During test execution, StresStimulus records
HTTP session information into the test log
which is stored in the test repository along
with metadata. The Metadata includes
information, such as VU number, iteration
number and test case name, which help to
find session information quickly. To display
necessary replayed sessions in the session
grid:

1. Click Show Sessions located in the Test
Result tab toolbar.

2. A query builder window pops up.

3. Each search criteria, such as VUs,
Iterations, Sessions, Test Case and Agent
names, has its own designated text box.

a. Multiple numeric values or ranges can be
combined in each text box. For examples: for
VUs, Iterations and Sessions use format 1-3,
5, 9;

b. Multiple names should be separated by a
comma. For example, for Test Cases and
Agents, use format Name1, Name2

Tip: Leave textboxes empty to broaden
the search.

4. For responses with Successes, Errors
and/or Timeouts: check 1 or 2 or 3 boxes.
Checking all or un-checking all will render all
sessions.

5. You can select sessions sent within a
specific time range, received within a specific
time range or combination of thereof.

o

 Check the Filter by Time
Range box

 Select Send, Received or
both

User Guide v1

ANALYZING RESULTS - FINDING PERFORMANCE ERRORS 311

 Enter the time range into the
From / To boxes in seconds
from the beginning of the test

Tip: The easiest way to enter retrieve
sessions sent or received during certain
time intervals it to query the test log from
the graphs (see Retrieving Sessions
from Graphs).

6. Click Show Sessions button

7. Requested sessions will be displayed in the
session grid.

Note:

 Retrieving more than 1,000 records, as entered in the Max Sessions box can impact
performance.

 Querying Test Log requires that session content be saved in the storage accessible from the
controller. This information is available in tests that ran from the controller without agents. In
distributed tests, however, this information is available only when SQL Server is used as
storage. In distributed tests with SQL Server CE-based storage, some of the session content
is stored locally on the agents and is not accessible from the controller. Therefore, only VUs
emulated on the controller can be queried.

7.6 Finding Performance Errors

Comparing Recorded and Replayed Sessions is an effective method of detecting performance
errors. The result of such comparison is displayed in a new tab (a) displaying Session Verification
tree (b) showing the outcome of the comparison of sessions recorded (c) with the same sessions
(d) replayed by particular users on a specific test run iteration. Next to every request, there is a

User Guide v1

ANALYZING RESULTS - FINDING PERFORMANCE ERRORS 312

status image (e) characterizing the outcome of comparing. The same comparison statuses are
used as during the test case verification.

To compare session content, right-click on a selected session and select Compare Sessions (f) to
display compare session inspector.

Comparing recorded and replayed responses can expose application errors thanks to rich text
comparison capabilities of the Compare Sessions Inspector. The following response elements will
be highlighted in the replayed session:

 application error messages or warnings,

 data of a significantly different size or format

Carefully examine such change to confirm or rule out the errors.

The session verification tree can be recalled from reports and from the session grid.

7.6.1 From Report

In the Error View select a row, right-click and select Compare with Recorded. The system will
determine which user in which iteration encountered this error and then will display a tree which
compares all replayed sessions for this user's iteration with the recorded sessions. This can help to
discover preceding and subsequent errors and find out the root cause of the error faster. Another

User Guide v1

ANALYZING RESULTS - FINDING PERFORMANCE ERRORS 313

troubleshooting option is in the error view. Right-click on the error and select See Waterfall for this
VU iteration From there you can select Compare with Recorded

7.6.2 From Session Grid

Once the replayed sessions are retrieved from the test repository, it is often necessary to compare
them to the corresponding recorded sessions for troubleshooting.

Select one or several replayed sessions and right click to bring up StresStimulus Commands
menu. Chose from the following options:

Replay Sessions

This will reissue the selected sessions' requests to the server. Then you can view the server's
response to ensure the requests were correctly constructed and if the server returns the expected
response.

Show matching recorded session(s)

This will add the corresponding recorded sessions to the session grid. Use this option to compare
multiple recorded and replayed sessions' properties displayed in the grid columns such as
response time, payload size or response status.

Compare with a recorded session

This option works when one session is selected in the session grid. It opens the
Inspector where you can compare

Compare with multiple recorded sessions

Use this option to simplify comparing multiple sessions. It opens a new tab with the
Verification tree having a node for every session selected in the session grid.

Note: Unlike executing Verify command, that will replay the test case, executing
with multiple recorded sessions
Session Verification Tree

Double-click a Session Verification tree node to display the
session.

7.7 External Reports

An External Report presents test results in a
portable (HTML) format that can
outside StresStimulus. It includes data from
the Test Result tab and subordinate page /
transaction result tabs.

To create an external report, on the test
results toolbar, click on External Report
pop-up will appear with options to custom
your report.

There are 2 types of reports:

 Multi-Document - creates multiple hyper
linked hierarchical HTML pages with a
report and sub reports. This option provides
convenient navigation between various
parts of the report. External distribution
requires sending multiple HTML and image
files. To distribute the multi
via email you can archive it (i.e. a zip file)
preserving its folder structure.

ANALYZING RESULTS - EXTERNAL REPORTS

This option works when one session is selected in the session grid. It opens the
where you can compare the content of the recorded and replayed session.

Compare with multiple recorded sessions

Use this option to simplify comparing multiple sessions. It opens a new tab with the
having a node for every session selected in the session grid.

Unlike executing Verify command, that will replay the test case, executing
with multiple recorded sessions will not replay the test case. It will only display the

ation Tree for quick comparison of multiple sessions.

click a Session Verification tree node to display the Compare Sessions Inspector

External Reports

An External Report presents test results in a
portable (HTML) format that can be distributed
outside StresStimulus. It includes data from
the Test Result tab and subordinate page /

To create an external report, on the test
External Report. A

up will appear with options to customize

There are 2 types of reports:

creates multiple hyper-
linked hierarchical HTML pages with a
report and sub reports. This option provides
convenient navigation between various
parts of the report. External distribution
requires sending multiple HTML and image

multi-document report
via email you can archive it (i.e. a zip file)
preserving its folder structure.

User Guide v1

EXTERNAL REPORTS 314

This option works when one session is selected in the session grid. It opens the Compare Sessions
the content of the recorded and replayed session.

Use this option to simplify comparing multiple sessions. It opens a new tab with the Session
having a node for every session selected in the session grid.

Unlike executing Verify command, that will replay the test case, executing Compare
will not replay the test case. It will only display the

Compare Sessions Inspector for a

User Guide v1

ANALYZING RESULTS - EXTERNAL REPORTS 315

 Single-Document - creates a single page
that includes a report and all sub reports.
This option is convenient when you need to
create a single report printout or import it
into a MS Word document. The single-
document external report combines the
content of the multi-document external
report in one page.

Specify the path in which you want to save
your report (1) and the type of report which
you wish to generate (2).

By default, the StresStimulus logo appears on
the first page of every test report section. Also,
every test report page footer displays the
Stimulus Technology copyright statement and
website reference. If you have a service-
provider license, you have the option to put
your custom logo on the report and change
the report footer (3).

Then, navigate through the tabs on the left of
the pop-up (4). The options available in the
tabs are described in Additional Options.

When you finish customizing your report, click
OK and your report will be generated and
saved to the path which you selected. After it
finishes generating, it will open in your default
browser automatically.

The multi-document external report contains
multiple HTML pages. The default page,
index.htm displays the Test Summary (b)
containing the information from the Test
Result Tab. It has a transaction and a page
sections (c) containing hyperlinks (d) to the
individual page and transaction reports.
Individual page and transaction reports
displayed in a separate html pages contain the
information from the Page and Transaction
Result Tab.

All HTML report are self-documented to allow
you to easily interpret the test result. Every
parameter displays an "?" icon (e) that on
mouse-over displays a value description.

Every grid column on mouse
tooltip (f) with the column description.

7.7.1 Additional Options

The Details tab lets you select which columns
you want to be excluded in the grid on your
report (a). You can customize the
Transaction details, Page details
details, Test Case details, and
details grids. To exclude a details grid in the
report, uncheck “Add details grid to the report”
(b) in all of the sub-page you wish to not
include.

The Graphs tab gives you the op
exclude the Key Performance Indicators
(KPI) and Load Agent graphs entirely or
select which curves you wish to omit.

All settings in the Report, Details and Graphs
tabs are stored in the application and will
persist after StresStimulus restart.

In the Pages tab, you can exclude the page
summaries form the report entirely (c) or
chose which details you want to omit:
Performance, Latency, Failure
Failure, and Request Details Grid
you can select which pages you want to
include in the report (e). You can also exclude
recorded Screenshot if the page has them.

Lastly, in the Transactions tab, you can
exclude transactions from your report entirely
or select which details to omit from the same
criteria available in the Pages tab. Then
select which transactions you want to include
in the report.

ANALYZING RESULTS - EXTERNAL REPORTS

Every grid column on mouse-over displays a
tooltip (f) with the column description.

Additional Options

The Details tab lets you select which columns
you want to be excluded in the grid on your
report (a). You can customize the

Page details, VU
, and Agent

grids. To exclude a details grid in the
report, uncheck “Add details grid to the report”

page you wish to not

The Graphs tab gives you the option to
Key Performance Indicators

graphs entirely or
select which curves you wish to omit.

All settings in the Report, Details and Graphs
tabs are stored in the application and will
persist after StresStimulus restart.

In the Pages tab, you can exclude the page
summaries form the report entirely (c) or
chose which details you want to omit:

Failure, Percent
Request Details Grid (e). Then,

you can select which pages you want to
n the report (e). You can also exclude

if the page has them.

Lastly, in the Transactions tab, you can
exclude transactions from your report entirely
or select which details to omit from the same
criteria available in the Pages tab. Then,
select which transactions you want to include

User Guide v1

EXTERNAL REPORTS 316

User Guide v1

ANALYZING RESULTS - COMPARING TESTS 317

7.8 Comparing Tests

Several test results can be compared side-by-side on a Multi-Test report tab. To create the Multi-
Test report, follow these steps

1. From the Analyze Results section (a), select the results to compare by checking corresponding
boxes (b).

2. Clicking Compare Tests(c) on the toolbar.

3. A new Multi-Test Report tab (d) will display the report

User Guide v1

ANALYZING RESULTS - COMPARING TESTS 318

Multi-Test report displays several views described in the following sections.

7.8.1 Test Comparison Summary View

This view displays key performance characteristics of the multiple selected test results side-by-
side. It allows to quickly compare main performance metrics of several tests.

To select Summary View, click Summary (a) on the toolbar.

The test summary includes several subsections that can be expanded / collapsed by clicking the
triangle icon (b).

User Guide v1

ANALYZING RESULTS - COMPARING TESTS 319

A list of the Summary View subsections is provided below:

7.8.1.1 Test Name

Test Run
Name

Optional one-word Test Run Name specified in the Configure Test section. It is
used as a suffix following a time-stamp of the test run displayed in the "Analyze
Results" section.

Test run
description

Test description specified in the Configure Test section prior to the test run

Result name The name automatically created for every test run. In SQL CE, a name of a .sdf
file.

Test File
name

The name of the test script file

Script last
modified

The timestamp of the last script modification

7.8.1.2 Test Settings

Load pattern Steady load pattern with number of VUs or step load pattern

Complete after (hh:mm:ss) The test primary and secondary completion criteria

Warm-up time (s) The warm-up time actually used in the test

User Guide v1

ANALYZING RESULTS - COMPARING TESTS 320

7.8.1.3 Test Run Information

Start time Test start time

End time Test end time

Test run duration The test duration in seconds. [End Time] - [Start Time]

7.8.1.4 Overall Result

Completion
Status

Shows whether the test was Completed or Aborted

Max User
Load

The maximum number of VUs reached during the test. When Constant Load
Pattern is selected, it will be equal to the set number of VUs. When Step Load
Pattern is selected, it will be equal to the Max number of VUs or a smaller number
that the test duration limit permits to reach.

Total sent
(KB)

The total amounts of test upload traffic that is equal to the sum of all requests'
sizes

Total received
(KB)

The total amount of test download traffic that is equal to the sum of all responses'
sizes

KB sent/sec KB sent per second. Calculated as [Total KB sent] / [Test run duration]

KB
received/sec

KB received per second. Calculated as [Total KB received] / [Test run duration]

7.8.1.5 Test Iterations

Avg. Iteration time
(s)

The average time it took to complete an iteration. Only displayed if all
iterations were completed.

Iterations started The combined number of test iterations started by all VUs

Iterations passed The combined number of test iterations completed by all VUs

Iterations failed The combined number of failed (aborted) test iterations

Incomplete
Iterations

The difference between Iterations started and Iterations passed or failed

7.8.1.6 Requests

Avg. response Calculated as [Aggregate Session time] / [Total Requests].

User Guide v1

ANALYZING RESULTS - COMPARING TESTS 321

time (s)

Requests/sec The number of HTTP transactions (sessions) issued by the load test engine.
It is calculated as [Total Requests] / [Test run duration].

Number of URLs The total number of recorded URLs

Total requests
issued

The combined number of requests issued during the test

Request errors The total number of errors

Request timeouts The total number of timeouts

7.8.1.7 Transactions

Avg. response time (s) Average transaction response time.

Transactions/sec Average transactions requested per second

Number of transactions The number of transactions in the test

Requested Transactions The total number of Transactions requested in all iterations

Transactions with error(s) The number of transactions with error(s)

Requested Transactions with
error(s)

The total number of Transactions requested in all iterations with
error(s)

Transactions with timeout(s) The number of transactions with with at least one timeout
request. See Page Timeout for more details.

Requested Transactions with
timeout(s)

The total number of Transactions requested in all iterations with
timeout(s)

Transactions with missed
goal(s)

The number of transactions with missed goal

Requested Transactions with
missed goal(s)

The total number of Transactions requested in all iterations with
missed goal(s)

Slowest Transaction(s) Up to five slowest transactions. Click a transaction link to open
a transaction report

7.8.1.8 Pages

Avg. response time (s) Average page response time.

User Guide v1

ANALYZING RESULTS - COMPARING TESTS 322

Pages/sec Average pages requested per second

Number of pages The number of pages in the test

Requested Pages The total number of pages requested in all iterations

Pages with error(s) The number of pages with error(s)

Requested Pages with
error(s)

The total number of pages requested in all iterations with error(s)

Pages with timeout(s) The number of pages with with at least one timeout request. See
Page Timeout for more details.

Requested Pages with
timeout(s)

The total number of pages requested in all iterations with timeout(s)

Pages with missed goal(s) The number of pages with missed goal

Requested Pages with
missed goal(s)

The total number of pages requested in all iterations with missed
goal(s)

Slowest Page(s) Up to five slowest pages. Click a page link to open a page report

7.8.1.9 Errors

Top
Errors

Up to five most occurring errors. Click an error link to retrieve and display all
occurrences of this error in the session grid on the left.

7.8.1.10 Transaction Response Times

This subsection displays side-by-side response time for all transaction across all compared tests.
Every transaction is listed on a separate row.

7.8.1.11 Page Response Times

This subsection displays response times for all pages across all compared tests side-by-side. Every
pages is listed on a separate row.

7.8.2 KPI Graph Comparison View

KPI Graph comparison view includes comparison graphs of major performance indicators of the
selected test results. It allows to quickly compare performance outcome of every test run.

To select KPI Graph Comparison View, click
layouts can be selected by clicking the

Each graph (c) will display one of six KPI counters for every selected result.

 Users - The number of instantiated and active VUs, iterating trough their respective test cases.
Some VUs can complete the test earlier than others and become inactive. VUs which
completed all their iterations before the test end are excluded from the active user count. If the
test is configured to complete only after all VUs complete their iterations, then the User graph
will show gradual declining the number of VUs at the end of the test.

 Req/Sec - The number of requests being sent per second.

 Avg. Response(s) - The average
response time graph reflects the average value during the checkpoint intervals. If
responses were received
so such datapoints are skipped to reflect an accurate response time curve.

 KB Received/Sec - The number of kilobytes currently received per second.

 Errors/Sec - The number of errors currently received per second.

 Pending Requests - The number of currently pending requests. Pend
that are issued but the response is not yet received by StresStimulus. Generally, the greater
number of pending requests indicates slower server response. This parameter can be used to
gauge performance change in several tests runs.

To select which graph to display in a panel, click the drop

ANALYZING RESULTS - COMPARING TESTS

KPI Graph Comparison View

KPI Graph comparison view includes comparison graphs of major performance indicators of the
selected test results. It allows to quickly compare performance outcome of every test run.

To select KPI Graph Comparison View, click KPI Graphs (a) on the toolbar. One to four panel
layouts can be selected by clicking the Layout drop-down (b).

Each graph (c) will display one of six KPI counters for every selected result.

nstantiated and active VUs, iterating trough their respective test cases.
Some VUs can complete the test earlier than others and become inactive. VUs which
completed all their iterations before the test end are excluded from the active user count. If the
test is configured to complete only after all VUs complete their iterations, then the User graph
will show gradual declining the number of VUs at the end of the test.

The number of requests being sent per second.

The average response time of the sent requests. Every datapoint on the
response time graph reflects the average value during the checkpoint intervals. If
responses were received between two datapoints, the response time cannot be determined,

skipped to reflect an accurate response time curve.

The number of kilobytes currently received per second.

The number of errors currently received per second.

The number of currently pending requests. Pend
that are issued but the response is not yet received by StresStimulus. Generally, the greater
number of pending requests indicates slower server response. This parameter can be used to
gauge performance change in several tests runs.

To select which graph to display in a panel, click the drop-down (d) above it.

User Guide v1

COMPARING TESTS 323

KPI Graph comparison view includes comparison graphs of major performance indicators of the
selected test results. It allows to quickly compare performance outcome of every test run.

(a) on the toolbar. One to four panel

Each graph (c) will display one of six KPI counters for every selected result.

nstantiated and active VUs, iterating trough their respective test cases.
Some VUs can complete the test earlier than others and become inactive. VUs which
completed all their iterations before the test end are excluded from the active user count. If the
test is configured to complete only after all VUs complete their iterations, then the User graph

response time of the sent requests. Every datapoint on the
response time graph reflects the average value during the checkpoint intervals. If no

between two datapoints, the response time cannot be determined,
skipped to reflect an accurate response time curve.

The number of kilobytes currently received per second.

The number of currently pending requests. Pending requests are those
that are issued but the response is not yet received by StresStimulus. Generally, the greater
number of pending requests indicates slower server response. This parameter can be used to

down (d) above it.

Each graph depicts one curve for every compared test run. For example, if you select 3 tests
results, each graph will display three curves, as shown on the figure.

Info: Each graph, supports the full range of graph and curve commands described in the
Graph Commands section.

Curve grid (e) located under the graph panels shows the following additiona
each curve

Visible Whether the curve is currently visible. Click the checkbox to hide/unhide the curve.

Indicator The name of the curve.

Color The curve color and point shape.

Range The current value range. The y
range.

Min Minimum value of the curve

Max Maximum value of the curve

Avg Average value of the curve

Last The last value of the curve

Warnings Number of threshold violation warnings (Sortable)

ANALYZING RESULTS - COMPARING TESTS

Each graph depicts one curve for every compared test run. For example, if you select 3 tests
results, each graph will display three curves, as shown on the figure.

ach graph, supports the full range of graph and curve commands described in the
section.

Curve grid (e) located under the graph panels shows the following additiona

Whether the curve is currently visible. Click the checkbox to hide/unhide the curve.

The name of the curve.

The curve color and point shape.

The current value range. The y-value of each point corresponds to a percent of the

Minimum value of the curve - datapoint aggregation (Sortable)

Maximum value of the curve - datapoint aggregation (Sortable)

Average value of the curve - datapoint aggregation (Sortable)

The last value of the curve - datapoint aggregation (Sortable)

Number of threshold violation warnings (Sortable)

User Guide v1

COMPARING TESTS 324

Each graph depicts one curve for every compared test run. For example, if you select 3 tests

ach graph, supports the full range of graph and curve commands described in the

Curve grid (e) located under the graph panels shows the following additional information about

Whether the curve is currently visible. Click the checkbox to hide/unhide the curve.

corresponds to a percent of the

(Sortable)

(Sortable)

(Sortable)

(Sortable)

Errors Number of threshold violation errors

Missed
Goals

Number of missed goals (Sortable)

To view other other metrics, navigate through the tabs (f).

ANALYZING RESULTS - COMPARING TESTS

Number of threshold violation errors (Sortable)

Number of missed goals (Sortable)

metrics, navigate through the tabs (f).

User Guide v1

COMPARING TESTS 325

8 ADVANCED TOPICS

Search the Advanced Topics section

8.1 Distributed Testing

Distributed testing allows to spread load generators across multiple concurrent computers, called
Load Agents (agents), operated under the management of a Controller. Distributed testing has the
following benefits:

 The ability to emulate a very large number of VUs (up to a million and above), unrestricted by
hardware capacity of a single machine.

 The ability to emulate users disseminated across a network and geographically.

8.1.1 Controller and Agents

A controller orchestrates a test concurrently running from multiple agents and consolidates
performance metrics. An agent is an unattended computer with a StresStimulus
agent mode turned on. The agent emulates virtual users in distributed tests, orchestrated by the
controller.

A single StresStimulus software product performs three roles: Test Designer, Controller, and Load
Agent. During the test design
and configuring test parameters. The Controller executes the test. It distributes the amount of load
between Load Agents, coordinates their operation, collects and aggregates real
metrics and generates final reports. The Load Agents operate concurrently under the orchestration
of the Controller. Load Agent can be installed on a physical or virtual machine as well as on an
Amazon EC2 or Microsoft Azure instance. A diagram
testing schema.

ADVANCED TOPICS - DISTRIBUTED TESTING

ADVANCED TOPICS

Search the Advanced Topics section

Distributed Testing

Distributed testing allows to spread load generators across multiple concurrent computers, called
(agents), operated under the management of a Controller. Distributed testing has the

The ability to emulate a very large number of VUs (up to a million and above), unrestricted by
hardware capacity of a single machine.

emulate users disseminated across a network and geographically.

Controller and Agents

A controller orchestrates a test concurrently running from multiple agents and consolidates
performance metrics. An agent is an unattended computer with a StresStimulus
agent mode turned on. The agent emulates virtual users in distributed tests, orchestrated by the

A single StresStimulus software product performs three roles: Test Designer, Controller, and Load
Agent. During the test design stage, the Designer is used for designing test scenarios (test script)
and configuring test parameters. The Controller executes the test. It distributes the amount of load
between Load Agents, coordinates their operation, collects and aggregates real
metrics and generates final reports. The Load Agents operate concurrently under the orchestration
of the Controller. Load Agent can be installed on a physical or virtual machine as well as on an
Amazon EC2 or Microsoft Azure instance. A diagram below shows an example of distributed

User Guide v1

DISTRIBUTED TESTING 326

Distributed testing allows to spread load generators across multiple concurrent computers, called
(agents), operated under the management of a Controller. Distributed testing has the

The ability to emulate a very large number of VUs (up to a million and above), unrestricted by

emulate users disseminated across a network and geographically.

A controller orchestrates a test concurrently running from multiple agents and consolidates
performance metrics. An agent is an unattended computer with a StresStimulus instance which has
agent mode turned on. The agent emulates virtual users in distributed tests, orchestrated by the

A single StresStimulus software product performs three roles: Test Designer, Controller, and Load
stage, the Designer is used for designing test scenarios (test script)

and configuring test parameters. The Controller executes the test. It distributes the amount of load
between Load Agents, coordinates their operation, collects and aggregates real-time performance
metrics and generates final reports. The Load Agents operate concurrently under the orchestration
of the Controller. Load Agent can be installed on a physical or virtual machine as well as on an

below shows an example of distributed

User Guide v1

ADVANCED TOPICS - DISTRIBUTED TESTING 327

8.1.1.1 Installing Agents on Amazon EC2

Install StresStimulus on Amazon EC2 Windows instances. Make sure that port 49998 is open on
Amazon virtual firewall. Fig below shows the example how it can be configured.

User Guide v1

ADVANCED TOPICS - DISTRIBUTED TESTING 328

1. From the Amazon web console, create a new security group, SS_Agent_sec_gr.

2. Create a custom TCP rule to keep inbound port 49998 (or another port if you changed the
default port while configuring the agent) open.

3. Use this security group when creating an EC2 instance.

8.1.1.2 Installing Agents on Microsoft Azure

Install StresStimulus on Microsoft Azure Virtual Machines. Add an Endpoint the virtual machine to
port 49998. Fig below shows the example how it can be configured.

User Guide v1

ADVANCED TOPICS - DISTRIBUTED TESTING 329

1. From the Microsoft Azure dashboard, select your virtual machine and select the Endpoints
option.

2. Create a custom Endpoint for TCP port 49998 or another port if you changed the default port
while configuring the agent.

8.1.1.3 Configuring Agent

After installation, StresStimulus operates as a
Designer and Controller. In order to instantiate
a Load Agent or a computer, enable Agent
Mode after installing StresStimulus.

Note: To avoid controller-agent
compatibility issues, the same
StresStimulus version must be installed
on all machines participated in a test.

To enable Agent mode:

User Guide v1

ADVANCED TOPICS - DISTRIBUTED TESTING 330

1. Bring up Agent Option dialog:

o

 Standalone version: in
Main Menu -> Options ->
Agent Options

 add-on version: in Main
Menu -> StresStimulus ->
Agent Options

2. Check Enable Agent Mode.

3. A popup will appear asking if you are sure
you wish to create an Agent. Click OK to
confirm.

4. Select one of two available options:

o

 Agent will run as
application. The agent will
run a StresStimulus
application or Fiddler add-on.
Before starting the test,
StresStimulus must be
manually launched. During
the test run, graphs and run-
time monitor will be visible
on the Agent, so while all
interactive UI controls will be
disabled, you can visually
monitor how the agent
participates in the distributed
test.

 Agent will run as a
Windows service. The
agent will run inside a
Windows Service. By default,
StresStimulus Agent service
will start automatically. In this
mode, the agent has no UI.
This agent mode uses less
hardware resources and has
the capacity to emulate
about 20% more VUs.

User Guide v1

ADVANCED TOPICS - DISTRIBUTED TESTING 331

5. Then give the agent host a name and
specify a listening port. The default port is
49998. The port can't be changed for agents
that run as a service and will always be the
default 49998.

6. Click OK when finished. The StresStimulus
status bar will display StresStimulus Load
Agent.

Note: Unlike the controller that requires a serial number, Agents do not require activation.
With the Enterprise / SP Edition license, you can install as many load agents as you need.

Once the agent is created, go to the controller and attached the agent.

8.1.2 Attaching Agents to Controller

1. On the controller, in the Configure Test ->
Load Agents section of the Workflow
Tree, the grid displays agents attached the
controller.

2. The first agent called Local is the controller
by itself.

3. To attach a new agent, on the grid’s toolbar,
click Add.

4. Enter required connection properties: Agent
Name, Host name or IP address without
"//", Port, Username, and Password

5. Click Test Connection. If a pop-up
message indicates any connectivity issues,
correct them and try again.

6. If the message indicates that the connection
is successfully verified, click Add Agent.

7. A new agent will appear in the list.

To edit the existing connection, selected it on
the grid and click Edit Selected Load Agent
Connection on the toolbar. Alternatively, you
can right-click and select Edit, or double-click
on the agent’s name.

To delete the existing connection, selected it

User Guide v1

ADVANCED TOPICS - DISTRIBUTED TESTING 332

in the grid and click Delete Selected Load
Agent Connection on the toolbar.
Alternatively, you can right-click and select
Delete.

Note: To communicate with the
controller, the Agent has a listener on
TCP port 49998 (or another port if you
changed the default port while
configuring the agent). If the Controller
displays a communication error, make
sure that StresStimulus is running on the
remote computer in agent mode, and
that TCP port 49998 is opened on
firewalls between the controller and
agents.

8.1.3 Configuring Load Distribution

The number of VUs emulated by a Load Agent
is proportionate to its VU weight.

1. Enter the desired VU weight for each
agent. To disable a Load Agent, set its VU
weight to zero.

2. To verify how the controller is going to
distribute VUs, click Test connections to
the Load Agents with non-zero VU
weights. This operation will re-test the
connections as well.

3. The expected number of VUs will be
displayed in the property grid.

Note: If you set the Local agent's mix
weight to 0 then it will not create any
VUs, and will act solely as a Controller.

User Guide v1

ADVANCED TOPICS - DISTRIBUTED TESTING 333

8.1.4 Distributed Test Results

KPI, Page, Transaction and Test Case Graphs
During the test run, every agent collects data points and send them to the controller. If the agent
runs in the application mode, it displays graphs with performance metrics collected on the agent.
Since the agents are most likely operated on unattended computers, agent graphs and progress
monitors can be viewed via Remote Desktop sessions.

The controller communicates with the agents, collects, and displays graphs with aggregated real-
time performance metrics.

Note: The number of data points on the agent graphs can be slightly higher than the number
of data points on the controller graphs. This is a normal behavior caused by limitation of the
network bandwidth.

Load Agent Performance Counters

Every agent in application mode displays graphs of its own local performance counters such as
CPU and memory utilization . By default, the Controller does not collect such Agent Performance
Counters. If you wish to display agent computer performance counters on the controller, make sure
to add them to the controller when configuring the test,

Test Run Report

After test completion, the controller generates a consolidated summary and detailed reports that
include information aggregated from all agents. The test run report is stored on the controller. It can
be reopened from the Test Results section.

Test Log

If the SQL Server CE is used as a repository, every agent will create its own database file locally for
every test run. HTTP session information is storedin the test log on a machine where such sessions
were initiated. You can query the test log as described in the Querying Test Log section. However,
the controller can not query a remote agent’s database. Therefore it cannot query a portion of the
test log generated by the VUs,instantiated on agents. The VUDetails report showson which test
machine every VU was instantiated.

If the SQL Server is used as a repository, a single database, shared between all agents/controller
will be used. In this case you can query the entire test log.

8.1.5 Load Generator Performance

An essential element of the controller or agent is the load generator that handles request /response
processing. It needs a sufficient number of .NET threads to timely send and process HTTP
messages.

The system creates the necessary number of
threads automatically, depending on the test
complexity, the number of VUs and the test
machine’s capacity. The actual number of
threads allocated to StresStimulus process is
controlled by the operating system, and
depends on the load generator's needs to
issue requests.

By default, before the test begins,
StresStimulus allocates the number of .NET
threads threads equal to the maximum
number of VUs expected in this test.

During test execution, one VU may consume
more than one thread to handle parallel
requests. If StresStimulus needs more
resources, the OS will gradually increase
threads to the sufficient level. On some
systems, however, OS fails to ramp
threads fast enough. This may result in
delays in issuing requests after receiving a
response at some moments during the t
execution. You can check if such delays exist
in your system by analyzing a page or
transaction waterfall chart.

If you see a gap between the moment of
receiving a response and issuing a
subsequent request, your system may need
more threads. To address the situation, you
can manually adjust the initial number of
threads, which is a property of a load agent.

Note: The gap between a response and a subsequent request can be caused by different
reasons. For example, StresStimulus intentionally
the emulated browser characteristics. Each browser type has a limited number of

ADVANCED TOPICS - DISTRIBUTED TESTING

Load Generator Performance

ial element of the controller or agent is the load generator that handles request /response
processing. It needs a sufficient number of .NET threads to timely send and process HTTP

The system creates the necessary number of
depending on the test

complexity, the number of VUs and the test
The actual number of

threads allocated to StresStimulus process is
controlled by the operating system, and
depends on the load generator's needs to

fault, before the test begins,
StresStimulus allocates the number of .NET
threads threads equal to the maximum
number of VUs expected in this test.

During test execution, one VU may consume
more than one thread to handle parallel

needs more
resources, the OS will gradually increase
threads to the sufficient level. On some
systems, however, OS fails to ramp-up
threads fast enough. This may result in
delays in issuing requests after receiving a
response at some moments during the test
execution. You can check if such delays exist
in your system by analyzing a page or

If you see a gap between the moment of
receiving a response and issuing a
subsequent request, your system may need

s the situation, you
can manually adjust the initial number of
threads, which is a property of a load agent.

: The gap between a response and a subsequent request can be caused by different
reasons. For example, StresStimulus intentionally delays subsequent request to comply with
the emulated browser characteristics. Each browser type has a limited number of

User Guide v1

DISTRIBUTED TESTING 334

ial element of the controller or agent is the load generator that handles request /response
processing. It needs a sufficient number of .NET threads to timely send and process HTTP

: The gap between a response and a subsequent request can be caused by different
delays subsequent request to comply with

the emulated browser characteristics. Each browser type has a limited number of

User Guide v1

ADVANCED TOPICS - DISTRIBUTED TESTING 335

connections-per-host and connections-per-proxy. When the number of connection exceeds
this limit, StresStimulus will pause requests to realistically mimic a physical browser behavior.

If you need to ramp up threads faster, which
may be necessary when running large-scale
tests on a high performance hardware, set the
Minimum starting threads property to the
level 120%-150% of the number of virtual
users. This should boost performance of your
load generator. After that, rerun your test to
check if such increase was sufficient. You
might need to try several different numbers
until your load generator will receives
sufficient resources. This property is
configured for each load agent individually.
Note that setting a too high number of threads
may leave insufficient resources for the OS
and can slow down your computer.

Info: One VU is not equal to one thread.
Threads available to the process (thread
pool) can be used by different VUs at
different times. Each VU can issue
multiple concurrent requests
(connections), depending on your test
case and the connection limit of the
selected browser. For example, IE9 can
open up to 6 connections.

Note: In the previous versions, thread
allocation algorithm relied on .NET
Framework's default algorithm of
allocating threads. As a result, the
starting thread count was typically
smaller than the number of virtual users.
For backward compatibility the option
use the legacy thread allocation
algorithm exist. To use it, set property
Allocate at least one thread per VU
No.

Typically the load engine is optimized for
performance to handle the more virtual users
on a single load generator. However, if your
test has many resource requests that have a
small expected response time want to change
the load engine optimization for "Time
Resolution". This will enable measuring
response times under 0.1 second with more
precision, however will have
impact with more virtual users.

8.2 Automation

StresStimulus supports a command line interface that can be used for various automation purposes
such as scheduling test runs using Windows Task Scheduler, or interfacing with other systems
such as continuous integration systems, etc.

The Standalone and Fiddler add

ADVANCED TOPICS -

In the previous versions, thread
allocation algorithm relied on .NET
Framework's default algorithm of
allocating threads. As a result, the
starting thread count was typically
smaller than the number of virtual users.
For backward compatibility the option to
use the legacy thread allocation
algorithm exist. To use it, set property
Allocate at least one thread per VU to

Typically the load engine is optimized for
performance to handle the more virtual users

However, if your
test has many resource requests that have a
small expected response time want to change
the load engine optimization for "Time
Resolution". This will enable measuring
response times under 0.1 second with more

a performance
impact with more virtual users.

Automation

StresStimulus supports a command line interface that can be used for various automation purposes
such as scheduling test runs using Windows Task Scheduler, or interfacing with other systems
such as continuous integration systems, etc.

The Standalone and Fiddler add-on versions have different command line formats.

User Guide v1

- AUTOMATION 336

StresStimulus supports a command line interface that can be used for various automation purposes
such as scheduling test runs using Windows Task Scheduler, or interfacing with other systems

on versions have different command line formats.

User Guide v1

ADVANCED TOPICS - AUTOMATION 337

Note: When StresStimulus is started from a command line, some of the interactive features,
like test wizard, are disabled to allow StresStimulus to function in unattended mode,

8.2.1 Command line interface for Standalone version

The standalone version uses the following command line:

StresStimulus.Application.exe /SS <File.ssconfig> [/ssclose]

where:

<File.ssconfig> is a StresStimulus test configuration file. Specify a full path or the default
directory %My Documents%/Fiddler/StresStimulus will be used.

/ssclose (optional) is a switch to close the application after the test is complete. The command will
not return until the application is closed. Use this flag to run multiple contiguous tests.

Exit code: The process will return the exit code 1 if the test failed the test quality criteria.

8.2.2 Command line interface for Add-on version

Use the following command to launch Fiddler, start the test, close Fiddler and return the control to
the batch processor:

LaunchFiddler.exe /ss <file.ssconfig> [/wait | /ssclose]

where:

<file.ssconfig> is a StresStimulus test configuration file. Specify a full path or the default
directory %My Documents%/Fiddler/StresStimulus will be used.

/wait (optional) is a switch to wait until the test is complete, close Fiddler and after that return
control to the batch processor. Use this flag to run multiple sequential tests. if the wait flack is not
used, the control to the batch processor will be returned immediately after launching Fiddler.

/ssclose is obsolete, has the same functionality as /wait and is used for backward compatibility
only.

Exit code: The process will return the exit code 1 if the test failed the test quality criteria.

8.2.3 Pre-run command line

You can execute a custom procedure before running a test case. One example of when this feature
can be helpful is when specific test data can be inserted into the database only once. Before
running a user can run a script that deletes the databa

To do so, in the Other Options section enter the command to launch the script in the
Command Line property. You can also specify a script timeout in the
Timeout

8.3 Querying Test Reposi

When SQL Server is set as test repository you can query test log directly and generate custom
reports using external analytical tools. The test repository table structure is shown below.

ADVANCED TOPICS - QUERYING TEST REPOSI

mmand line

You can execute a custom procedure before running a test case. One example of when this feature
can be helpful is when specific test data can be inserted into the database only once. Before
running a user can run a script that deletes the database records inserted by the previous test run.

To do so, in the Other Options section enter the command to launch the script in the
property. You can also specify a script timeout in the Pre

Querying Test Repository

When SQL Server is set as test repository you can query test log directly and generate custom
reports using external analytical tools. The test repository table structure is shown below.

User Guide v1

QUERYING TEST REPOSITORY 338

You can execute a custom procedure before running a test case. One example of when this feature
can be helpful is when specific test data can be inserted into the database only once. Before

se records inserted by the previous test run.

To do so, in the Other Options section enter the command to launch the script in the Pre-run
Pre-run Command

When SQL Server is set as test repository you can query test log directly and generate custom
reports using external analytical tools. The test repository table structure is shown below.

User Guide v1

ADVANCED TOPICS - QUERYING TEST REPOSITORY 339

ResultData is the main table that stores all session information. Session's time-based performance
metrics is stored in Fiddler session timer format described here. The following six timers used:

 ClientBeginRequest - Time at which this HTTP request began. May be much later than
ClientConnected due to client connection reuse.

 ClientDoneRequest - Exact time that the client browser finished sending the HTTP request to
StresStimulus or Fiddler.

 ServerGotRequest - Exact time that StresStimulus or Fiddler finished (re)sending the HTTP
request to the server.

 ServerBeginResponse - Exact time that StresStimulus or Fiddler got the first bytes of the
server's HTTP response.

 ServerDoneResponse - Exact time that StresStimulus or Fiddler got the last bytes of the server's
HTTP response.

 ClientDoneResponse- Exact time that StresStimulus or Fiddler finished transmitting the HTTP
response to the client browser.

API for querying session content

The Query Log allows to display sess
session grid to display a very large number of records is limited. For such situations an option
exists to query session content directly from the test repository.

Session data is stored in the ResultData
response information is stored UTF8 binary encoded form.

to decode session content to clear text use build

SELECT dbo.Utf8ToNVarChar(Reques
dbo.Utf8ToNVarChar(ResponseBytes) AS ResponseChars FROM ResultData

8.4 Extensibility

Extensibility allows to programmatically extend StresStimulus functionality and behavior. You can
write your own custom logic that can access
parameters, modify HTTP requests and responses and create other customizations.

Extensibility allows to:

 create scriptable variables that can be used to create custom request parameter of any
complexity;

 create external components that can be used to modify StresStimulus event handling and
change requests and responses based on the test context information.

8.4.1 Scriptable Variables

Scriptable variables can be created by writing .NET code. Once created, they
the Source Variable section of the workflow tree (a) and appear in the
alongside with other variables.

ADVANCED TOPICS - EXTENSIBILITY

API for querying session content

The Query Log allows to display session content in the session grid. However, the capacity of the
session grid to display a very large number of records is limited. For such situations an option
exists to query session content directly from the test repository.

ResultData table in the SQL Server database. However requests and
response information is stored UTF8 binary encoded form.

to decode session content to clear text use build-in function Utf8ToNVarChar()

SELECT dbo.Utf8ToNVarChar(RequestBytes) AS RequestChars,
dbo.Utf8ToNVarChar(ResponseBytes) AS ResponseChars FROM ResultData

Extensibility

Extensibility allows to programmatically extend StresStimulus functionality and behavior. You can
write your own custom logic that can access internal test object model (TOM), generate test
parameters, modify HTTP requests and responses and create other customizations.

create scriptable variables that can be used to create custom request parameter of any

ate external components that can be used to modify StresStimulus event handling and
change requests and responses based on the test context information.

Scriptable Variables

Scriptable variables can be created by writing .NET code. Once created, they
section of the workflow tree (a) and appear in the Variable Picker

alongside with other variables.

User Guide v1

EXTENSIBILITY 340

ion content in the session grid. However, the capacity of the
session grid to display a very large number of records is limited. For such situations an option

table in the SQL Server database. However requests and

Utf8ToNVarChar() as shown below:

dbo.Utf8ToNVarChar(ResponseBytes) AS ResponseChars FROM ResultData

Extensibility allows to programmatically extend StresStimulus functionality and behavior. You can
internal test object model (TOM), generate test

parameters, modify HTTP requests and responses and create other customizations.

create scriptable variables that can be used to create custom request parameter of any

ate external components that can be used to modify StresStimulus event handling and
change requests and responses based on the test context information.

Scriptable variables can be created by writing .NET code. Once created, they are are displayed in
Variable Picker (b)

User Guide v1

ADVANCED TOPICS - EXTENSIBILITY 341

Scriptable variables are used similarly to other source variables such as extractors, datasets,
functions and data generators. Once the scriptable variable is implemented, it can be used to
parameterize requests the same way as other variables.

StresStimulus evaluates the scriptable
variable before sending the request that has
the parameter where the variable is used
("related request"). At this moment, your
custom code is executed, the return value is
assigned to the variable and is used to
parameterize the request.

There are 2 modes of evaluation the scriptable
variable: on request and on iteration:

 On request: the evaluation event takes
place before issuing every related request,
in every iteration for every VU. Use this
evaluation mode only when the variable
value is expected to change on every
occurrence of your code execution.

 On iteration: the evaluation event takes
place once per VU-iteration before issuing
the first related request. After that, the
scriptable variable value is stored in
StresStimulus and is re-used within the
same iteration in any subsequent related
requests, if they exist. Use this mode if the
value of the scriptable variable must stay
the same for the duration of the VU-
iteration.

There are two type of scriptable variables that
are differs by the method they are created:

 Internal scriptable variables are created
in StresStimulus. Their benefit is simplicity
as they do not require any additional
development tools.

 External scriptable variables are created
by developing external .NET DLLs using
Microsoft Visual Studio. This allows to

develop more sophisticated functionality
and behavior using external libraries and
powerful development and debugging
Visual Studio environment.

8.4.2 Internal Scriptable Variables

To create a scriptable variable inside StresStimulus, navigate to the Scriptable Var tab (a). From
there, you can create your own variable. Select one of three languages you wish to use: C#,
VB.NET or JScript.NET (b).

Give your variable a name (1) and chose when you want to evaluate it (2). StresStimulus will either
evaluate the variable once per VU
will open and you can write your c

You can edit or delete your variable later on by going back to the Scriptable Var tab, selecting the
variable you wish to modify and then clicking either

ADVANCED TOPICS - EXTENSIBILITY

develop more sophisticated functionality
and behavior using external libraries and
powerful development and debugging

al Studio environment.

Internal Scriptable Variables

To create a scriptable variable inside StresStimulus, navigate to the Scriptable Var tab (a). From
there, you can create your own variable. Select one of three languages you wish to use: C#,

Give your variable a name (1) and chose when you want to evaluate it (2). StresStimulus will either
evaluate the variable once per VU-iteration on the first use or on every use. Then the script editor
will open and you can write your code, compile it and save it.

You can edit or delete your variable later on by going back to the Scriptable Var tab, selecting the
variable you wish to modify and then clicking either Edit (c) or Delete (d).

User Guide v1

EXTENSIBILITY 342

To create a scriptable variable inside StresStimulus, navigate to the Scriptable Var tab (a). From
there, you can create your own variable. Select one of three languages you wish to use: C#,

Give your variable a name (1) and chose when you want to evaluate it (2). StresStimulus will either
iteration on the first use or on every use. Then the script editor

You can edit or delete your variable later on by going back to the Scriptable Var tab, selecting the

User Guide v1

ADVANCED TOPICS - EXTENSIBILITY 343

8.4.3 Programming Scriptable Variables

In order to create a scriptable variable, implement the
StresStimulus.Extensibility.IExternalVariable
definition:

Tabelle 1 IExternalVariable Members

/// <summary>
/// An external variable.
/// </summary>
public interface IExternalVariable
{

/// <summary>
/// Return true if the variable will be evaluated once per VU

iteration. Otherwise will be evaluated on every parameter.
/// </summary>
bool Evaluat

/// <summary>
/// Return a value for the given session context.
/// </summary>
/// <param name="session">The session context object of the

request consuming the variable.</param>
/// <returns>The source variable value</returns>
string GetValue(SessionContext context);

ADVANCED TOPICS - EXTENSIBILITY

Programming Scriptable Variables

to create a scriptable variable, implement the
StresStimulus.Extensibility.IExternalVariable interface. It has the following interface

IExternalVariable Members

/// An external variable.

public interface IExternalVariable

/// <summary>
/// Return true if the variable will be evaluated once per VU

iteration. Otherwise will be evaluated on every parameter.
/// </summary>
bool EvaluateOnIteration { get; }

/// <summary>
/// Return a value for the given session context.
/// </summary>
/// <param name="session">The session context object of the

request consuming the variable.</param>
eturns>The source variable value</returns>

string GetValue(SessionContext context);

User Guide v1

EXTENSIBILITY 344

interface. It has the following interface

/// Return true if the variable will be evaluated once per VU
iteration. Otherwise will be evaluated on every parameter.

/// Return a value for the given session context.

/// <param name="session">The session context object of the

eturns>The source variable value</returns>

User Guide v1

ADVANCED TOPICS - EXTENSIBILITY 345

}

This interface has one property and one method:

 The GetValue() method should have all the logic of the scriptable variable and must return the
parameter value. If no value (or null value) is returned, then StresStimulus will use the recorded
value when sending the request. This method receives a SessionContext object object that
describes the iteration and VU context of which this scriptable variable is called from.

 The EvaluateOnIteration property should return true if this scriptable variable have the same
value throughout each VU's iteration. This property should only return false if the scriptable
variable is used in several requests in the test case and the value is expected to change from
request to request.

8.4.3.1 Practical considerations

One instance of the class is created for every parameter in a test case. Here is an example: in a
test case a scriptable variable MyScriptVar is used to create 3 parameters in 3 different requests.
In this case, 3 instances of the MyScriptVar class are created. They are instantiated at the
moments when the scriptable variable is bound to the parameters. This happens when you open
the test, or on-demand when you create a parameter in the test designer. There are several
consequences of this design:

1. Every VU and every iteration during the test will use the same instance of the class associated
with the corresponding parameter (3 instances per MyScriptVar variable in this case).

2. Class level variables persist throughout StresStimulus application session. If you restart the test
without closing StresStimulus, the class level variables will be not initialized, which makes them
less predictable. In most cases it makes sense to use local method variables.

3. During test runtime, GetValue() is called when evaluating the corresponding parameters. For
example, if you put your test case in a loop which is executed twice, then every VU on every
iteration will trigger six GetValue() calls.

4. GetValue() is called asynchronously for every VU on every iteration. So if you have 100 VUs
each running 5 iterations the total number of calls will be 100 * 5 * 6 = 3000. This method is not
thread-safe, so use locks when using shared resources.

5. The GetValue() call in Stimulus is located within a try/catch block. If your GetValue()
implementation throws an exception, it will be ignored and the recorded value will be used in
StresStimulus to parameterize the request.

6. GetValue() execution time can have performance impact on the StresStimulus load generator
hit rate. Design GetValue() for performance.

User Guide v1

ADVANCED TOPICS - EXTENSIBILITY 346

8.4.3.2 Example

The following is a simple example creates a parameter that returns a unique time-based id. For
more complex examples see the subsequent sections.

Tabelle 2 Simple Example

using System;
using StresStimulus.Extensibility;
class Ticks : IExternalVariable
{

public Ticks()
{

//Do not edit this section.
}

/// <summary>
/// Return true if the variable will be evaluated once per VU

iteration. Otherwise will be evaluated on every paramater.
/// </summary>
bool IExternalVariable.EvaluateOnIteration
{

get
{

return true;
}

}
/// <summary>
/// Return a value for the given session context.
/// </summary>
/// <param name="session">The session context object of the

request consuming the variable.</param>
/// <returns>The source variable value.</returns>
string IExternalVariable.GetValue(SessionContext context)
{

return DateTime.Now.Ticks.ToString();
}

}

8.4.3.3 SessionContext object

The SessionContext object describes the iteration and VU context of which a scriptable variable is
called from. This object can be accesses as an argument GetValue(SessionContext) method

User Guide v1

ADVANCED TOPICS - EXTENSIBILITY 347

when implementing IExternalVariable interface. It also has access to helper object Extractor
manipulation to further expand functionality.

Tabelle 3 SessionContext Members

/// <summary>
/// The runtime session iteration and VU context.
/// </summary>
public class SessionContext
{

/// <summary>
/// The session id.
/// </summary>
public int RecordedSession { get; }
/// <summary>
/// The test case name.
/// </summary>
public string RecordedTestCase { get; }
/// <summary>
/// The current iteration number.
/// </summary>
public int IterationNumber { get; }
/// <summary>
/// The current request number in iteration.
/// </summary>
public int RequestNumber { get; }
/// <summary>
/// The VU number.
/// </summary>
public int VUNumber { get; }
/// <summary>
/// The extractor runtime object for the VU.
/// </summary>
public ExtractorRuntime ExtractorRuntime { get; }
/// <summary>
/// Returns the data source with the given name.
/// </summary>
/// <param name="name">The name of the data set.</param>
/// <returns>The DataTable object that represents the data

set. Returns null if data source does not exist.</returns>
public DataTable GetDatasource(string name);

}

User Guide v1

ADVANCED TOPICS - EXTENSIBILITY 348

Example

The following example implements the Big IP persistence cookie encoding for F5 load-balancer. In
this environment the target server is specified in the request cookie header, so the example
parameterizes the cookie for every VU and makes sure the distribution is even between the
servers. There are a few steps performed here:

1. The IP Addresses and port of the servers are stored in an array called EndPointList.

2. Use the SessionContext.VUNumber to determine what VU is currently asking for the cookie. In
order assign every VU to the next endpoint perform a vu number modulo number of enpoints
operation (see below).

3. Encode the IP Address to the BIGipServer specification.

For more details on BigIPServer cookie this click here.

Tabelle 4 Big IP Server Example

class BIGipServer : IExternalVariable
{

public BIGipServer()
{

//Do not edit this section.
}

/// <summary>
/// Return true if the variable will be evaluated once per VU

iteration. Otherwise will be evaluated on every parameter.
/// </summary>
bool IExternalVariable.EvaluateOnIteration
{

get
{

return true;
}

}

/// <summary>
/// List of server endpoints behind the load balancer. Add as

many as necessary.
/// </summary>
static string[] EndPointLists = new string[] {

"10.238.108.162:443",
"10.1.1.100:8080",

};
/// <summary>
/// Return a value for the given session context.
/// </summary>
/// <param name="session">The session context object of the

User Guide v1

ADVANCED TOPICS - EXTENSIBILITY 349

request consuming the variable.</param>
/// <returns>The source variable value.</returns>
string IExternalVariable.GetValue(SessionContext context)
{

int index = context.VUNumber % EndPointLists.Length;
//Perform the modulo operation.

return EncodeEndpoint(EndPointLists[index]); //Return the
encoded value.

}

/// <summary>
/// Returns encoded representation of an endpoint.
/// </summary>
/// <param name="endpoint">The endpoint to encode

{ip_address}:{port}.</param>
/// <returns>The encoded endpoint string.</returns>
static string EncodeEndpoint(string endpoint)
{

string[] parts = endpoint.Split(':');
string sIp = parts[0], sPort = parts[1];
string[] octets = sIp.Split('.');
long eAddress =

(byte.Parse(octets[0]) |
byte.Parse(octets[1]) << 8 |
byte.Parse(octets[2]) << 16 |
byte.Parse(octets[3]) << 24) & 0xFFFFFFFFL;

short port = short.Parse(sPort);
int ePort =

((port & 0xFF) << 8) |
((port & 0xFF00) >> 8);

return string.Format("{0}.{1}.0000", eAddress, ePort);
}

}

8.4.3.4 Extractor manipulation

A scriptable variable can access the runtime extractor values using the ExtractorRuntime object
available from the SessionContext object. This is useful in situations where it necessary to
emulate javascript actions that the browser would otherwise perform. See example below.

User Guide v1

ADVANCED TOPICS - EXTENSIBILITY 350

Tabelle 5 ExtractorRuntime

/// <summary>
/// A virtual user's extractor runtime.
/// </summary>
public class ExtractorRuntime
{

/// <summary>
/// Returns the extractor's current value for the VU.
/// </summary>
/// <param name="extractor">The name of the extractor.</param>
/// <returns>The value of the extractor. Returns an empty string

if the extractor is not found.</returns>
public string GetExtractorValue(string extractor);

/// <summary>
/// Set the extractor's value for the current VU iteration.
/// </summary>
/// <param name="extractor">The name of the extractor.</param>
/// <param name="value">The value of the extractor to

set/</param>
public void SetExtractorValue(string extractor, string value);

}

Changing extractor values

In some cases it may be necessary to change the extractor's value for the current iteration. You
can use the SetExtractorValue() method to do so.

Example

The following example returns a value of a login key that is a combination of a server defined prefix
and the current epoch timestamp. In the browser environment, the server sends a key prefix and
then some client javascript function would take the prefix and add the current epoch timestamp to it
to be used in subsequent requests. This behavior can be replicated in StresStimulus using the
following code. For this example assume that we created an extractor named KeyPrefix.

Tabelle 6 Extractor example

class ExtractorKeyVariable : IExternalVariable
{

public ExtractorKeyVariable()
{

//Do not edit this section.

User Guide v1

ADVANCED TOPICS - EXTENSIBILITY 351

}

/// <summary>
/// Return true if the variable will be evaluated once per VU

iteration. Otherwise will be evaluated on every parameter.
/// </summary>
bool IExternalVariable.EvaluateOnIteration
{

get
{

return true;
}

}

/// <summary>
/// Return a combination of server defined prefix and current

timestamp.
/// </summary>
/// <param name="session">The session context object of the

request consuming the variable.</param>
/// <returns>The source variable value.</returns>
string IExternalVariable.GetValue(SessionContext context)
{

string prefix =
context.ExtractorRuntime.GetExtractorValue("KeyPrefix");

if (!string.IsNullOrEmpty(prefix)) //check this to make sure
the server did in fact send the prefix.

{
return string.Format("{0}_{1}", prefix,

ToUnixTime(DateTime.Now));
}
return null;

}

/// <summary>
/// Returns given DateTime to epoch time format.
/// </summary>
/// <param name="date"></param>
/// <returns></returns>
static long ToUnixTime(DateTime date)
{

var epoch = new DateTime(1970, 1, 1, 0, 0, 0,
DateTimeKind.Utc);

return Convert.ToInt64((date - epoch).TotalMilliseconds);
}

}

User Guide v1

ADVANCED TOPICS - EXTENSIBILITY 352

Note

In the above example, the extractor KeyPrefix must be extracted from a response that comes
before the request where ExtractorKeyVariable scriptable variable is used.

8.4.3.5 Dataset manipulation

A scriptable variable can access the datasets that are part test in order to perform data
manipulation. Datasets data can be accessed from the SessionContext.GetDatasource(string)
method that returns a System.Data.DataTable object. This is useful in situations where it necessary
to emulate javascript actions that the browser would otherwise perform. See example below.

Example

The following example returns base64 encoded username and password that come from a dataset.
In this example we'll implement VU binding, so each VU use its own credentials from the dataset.
There are a few steps performed here:

1. Get the dataset called Credentials which has columns Username and Password. Note: This
dataset must exist in the test.

2. Retrieve the row number that corresponds to the VU.

3. Return the base64 encoded value of a combination of username and password column for the
determined row.

Tabelle 7 Base64 encode example

public class Base64EncodeCredentials : IExternalVariable
{

public Base64EncodeCredentials()
{

//Do not edit this section.
}

/// <summary>
/// Return true if the variable will be evaluated once per VU

iteration. Otherwise will be evaluated on every parameter.
/// </summary>
bool IExternalVariable.EvaluateOnIteration

User Guide v1

ADVANCED TOPICS - EXTENSIBILITY 353

{
get
{

return true;
}

}

/// <summary>
/// Return a combination of server defined prefix and current

timestamp.
/// </summary>
/// <param name="session">The session context object of the

request consuming the variable.</param>
/// <returns>The source variable value.</returns>
string IExternalVariable.GetValue(SessionContext context)
{

DataTable dt = context.GetDatasource("Credentials");
if (dt != null)
{

int row = context.VUNumber; //Use this option when number
of VUs <= number of rows in UserData table

//int row = context.VUNumber % dt.Rows.Count; //Use this
option when number of VUs > number of rows in UserData table

if (row < dt.Rows.Count)
return

base64Encode(dt.Rows[row]["Username"].ToString(),
dt.Rows[row]["Password"].ToString());

}
return null;

}

/// <summary>
/// Base64 encode username and password.
/// </summary>
/// <param name="username">Username string</param>
/// <param name="password">Password string</param>
/// <returns>Base64 string of username : password.</returns>
string base64Encode(string username, string password)
{

string userpass = username + ":" + password;
return

Convert.ToBase64String(Encoding.ASCII.GetBytes(userpass));
}

}

8.4.4 External Scriptable Variables

To create an external scriptable variable, in Visual studio create a new class library project. Then
add a reference to StresStimulus extensibility API located in the
namespace using the following assembly:

 In standalone version, use namespace is located in the

 In Fiddler add-on version
assembly

If you wish to use your custom External Scriptable Variables with both StresStimulus versions,
create/compile two versions of the extensions using the same codebase, but referencing two
different StresStimulus assemblies.

Your assembly should be stored into the
MyTest.ssconfig, copy the asse

Programming of the External Scriptable Variables is similar to programming the
Variables.

8.4.4.1 .NET versions

StresStimulus is built on .NET 3.5, however it runs seamlessly
and/or .NET 4 Framework. However, this becomes important when building external StresStimulus
extensions. Particularly, extensions built in .NET 4 will not load on .NET 3.5. If you built an
extension in .NET 4 and have .NET 3

8.4.4.2 Standalone Version:

In StresStimulus install directory, find file StresStimulus.Application.exe.config. Open and remove
the line <supportedRuntime version="v2.0.50727"/> and save it. After tha
launch under .NET 4.0. You would need to make this change again after every StresStimulus
reinstall / update.

8.4.4.3 Fiddler addon:

Use Fiddler4 (not Fiddler2). StresStimulus will run inside Fiddler process under .NET 4.0. This
workaround does not required you to make any changes after StresStimulus reinstall / update.
StresStimulus add-on version has all features of the standalone version plus Fiddler integration.

8.4.4.4 Distributed Testing:

If using external variables in a
version of StresStimulus is running on the the controller and agents being used.

 If the controller is running
version or as a Windows service

ADVANCED TOPICS - EXTENSIBILITY

External Scriptable Variables

To create an external scriptable variable, in Visual studio create a new class library project. Then
add a reference to StresStimulus extensibility API located in the StresStimulus.Extensibility
namespace using the following assembly:

, use namespace is located in the StresStimulus.Core

on version, use namespace is located in StresStimulus.Core.Fiddler

If you wish to use your custom External Scriptable Variables with both StresStimulus versions,
reate/compile two versions of the extensions using the same codebase, but referencing two

different StresStimulus assemblies.

Your assembly should be stored into the Bin subfolder in the test folder. For example, for the test
, copy the assembly dll to MyTest\bin folder.

Programming of the External Scriptable Variables is similar to programming the

StresStimulus is built on .NET 3.5, however it runs seamlessly on machines that have .NET 3.5
and/or .NET 4 Framework. However, this becomes important when building external StresStimulus
extensions. Particularly, extensions built in .NET 4 will not load on .NET 3.5. If you built an
extension in .NET 4 and have .NET 3.5 and .NET 4 installed on your machine then do the following:

Standalone Version:

In StresStimulus install directory, find file StresStimulus.Application.exe.config. Open and remove
the line <supportedRuntime version="v2.0.50727"/> and save it. After that, StresStimulus will
launch under .NET 4.0. You would need to make this change again after every StresStimulus

Fiddler addon:

Use Fiddler4 (not Fiddler2). StresStimulus will run inside Fiddler process under .NET 4.0. This
oes not required you to make any changes after StresStimulus reinstall / update.

on version has all features of the standalone version plus Fiddler integration.

Distributed Testing:

If using external variables in a distributed testing environment, it's important to consider what
version of StresStimulus is running on the the controller and agents being used.

If the controller is running standalone version, the agents must be running
Windows service.

User Guide v1

EXTENSIBILITY 354

To create an external scriptable variable, in Visual studio create a new class library project. Then
StresStimulus.Extensibility

StresStimulus.Core assembly

StresStimulus.Core.Fiddler

If you wish to use your custom External Scriptable Variables with both StresStimulus versions,
reate/compile two versions of the extensions using the same codebase, but referencing two

subfolder in the test folder. For example, for the test

Programming of the External Scriptable Variables is similar to programming the Internal Scriptable

on machines that have .NET 3.5
and/or .NET 4 Framework. However, this becomes important when building external StresStimulus
extensions. Particularly, extensions built in .NET 4 will not load on .NET 3.5. If you built an

.5 and .NET 4 installed on your machine then do the following:

In StresStimulus install directory, find file StresStimulus.Application.exe.config. Open and remove
t, StresStimulus will

launch under .NET 4.0. You would need to make this change again after every StresStimulus

Use Fiddler4 (not Fiddler2). StresStimulus will run inside Fiddler process under .NET 4.0. This
oes not required you to make any changes after StresStimulus reinstall / update.

on version has all features of the standalone version plus Fiddler integration.

, it's important to consider what
version of StresStimulus is running on the the controller and agents being used.

, the agents must be running standalone

 If the controller is running
version.

External Components

The information provided in this section also pertains to

8.4.5 External Components

You can further extend StresStimulus run
component traps StresStimulus run

To create an external component implement
StresStimulus.Extensibility.IExternalComponent
definition:

Tabelle 8 IExternalComponent Members

/// <summary>
/// Interface to handle test events. Must have a no argument
contructor.
/// </summary>
public interface IExternalComponent
{

/// <summary>
/// Fired when test started.
/// </summary>
void OnTestStart();
/// <summary>
/// Fired when test ends.
/// </summary>
void OnTestEnd();
/// <summary>
/// Fired before a request is sent.
/// </summary>
/// <param name="session">The session object</param>
void OnBeforeRequest(RuntimeSession session);
/// <summary>
/// Fired after a response is received.
/// </summary>

ADVANCED TOPICS - EXTENSIBILITY

If the controller is running Fiddler add-on version, the agents must be running

The information provided in this section also pertains to external components

External Components

You can further extend StresStimulus run-time by creating an external component. An external
component traps StresStimulus run-time events to allow extending its functionality.

To create an external component implement the
StresStimulus.Extensibility.IExternalComponent interface. It has the following interface

IExternalComponent Members

/// Interface to handle test events. Must have a no argument

public interface IExternalComponent

/// Fired when test started.

void OnTestStart();

/// Fired when test ends.

void OnTestEnd();

/// Fired before a request is sent.

/// <param name="session">The session object</param>
void OnBeforeRequest(RuntimeSession session);

/// Fired after a response is received.

User Guide v1

EXTENSIBILITY 355

, the agents must be running Fiddler add-on

components.

time by creating an external component. An external
time events to allow extending its functionality.

interface. It has the following interface

/// Interface to handle test events. Must have a no argument

/// <param name="session">The session object</param>

User Guide v1

ADVANCED TOPICS - EXTENSIBILITY 356

/// <param name="session">The session object</param>
void OnAfterResponse(RuntimeSession session);

}

 OnTestStart(): Use this method initialize any test specific objects that will be used during the
test, or to run any pre-test script (such as cleaning previously created database records).

 OnTestEnd(): Use this method to clean up any objects used during the test or run any post-test
script.

 OnBeforeRequest(): This is called before a request is sent. It receives an instance of
RuntimeSession object that can be used to customize the request headers and body. This
method is called after all parameters have been applied to the request.

 OnAfterResponse(): This is called after a response is received. It receives an instance of
RuntimeSession object to read the response headers and body for further automation.

The RuntimeSession class has has access to the run-time session object that has access to
request and response data. It contains the following properties and methods:

Tabelle 9 RuntimeSession Members

/// <summary>
/// A replayed runtime session object.
/// </summary>
public class RuntimeSession
{

/// <summary>
/// The recorded session id.
/// </summary>
public int RecordedSession { get; }
/// <summary>
/// The recorded test case name.
/// </summary>
public string RecordedTestCase { get; }
/// <summary>
/// The current iteration number.
/// </summary>
public int IterationNumber { get; }
/// <summary>
/// The current request number in iteration.
/// </summary>
public int RequestNumber { get; }
/// <summary>

User Guide v1

ADVANCED TOPICS - EXTENSIBILITY 357

/// The VU number.
/// </summary>
public int VUNumber { get; }
/// <summary>
/// The extractor runtime object for the VU.
/// </summary>
public ExtractorRuntime ExtractorRuntime { get; }
/// <summary>
/// Returns the data source with the given name.
/// </summary>
/// <param name="name">The name of the data set.</param>
/// <returns>The DataTable object that represents the data set.

Returns null if data source does not exist.</returns>
public DataTable GetDatasource(string name);
/// <summary>
/// The url.
/// </summary>
public Uri Url { get; }
/// <summary>
/// Get request headers.
/// </summary>
/// <returns>An enumerable list of request headers.</returns>
public IEnumerable<NameValuePair> GetRequestHeaders();
/// <summary>
/// Gets a string representation of the request body.
/// </summary>
/// <returns>The string representation of the request

body.</returns>
public string GetRequestBody();
/// <summary>
/// Gets the raw request body.
/// </summary>
/// <returns>The byte[] representation of the request

body.</returns>
public byte[] GetRawRequestBody();
/// <summary>
/// Change or add a request header. Set the value to null to

remove the header.
/// </summary>
/// <param name="name">The name of the request header.</param>
/// <param name="value">The value of the request header.</param>
public void SetRequestHeader(string name, string value);
/// <summary>
/// Change the request body.
/// </summary>
/// <param name="body">The byte[] of the new response

body.</param>
public void SetRequestBody(byte[] body);

User Guide v1

ADVANCED TOPICS - EXTENSIBILITY 358

/// <summary>
/// Returns the response code.
/// </summary>
public int ResponseCode;
/// <summary>
/// Get response headers.
/// </summary>
/// <returns>An enumerable list of response headers.</returns>
public IEnumerable<NameValuePair> GetResponseHeaders();
/// <summary>
/// Gets a string representation of the response body.
/// </summary>
/// <returns>The string representation of the response

body.</returns>
public string GetResponseBody();
/// <summary>
/// Gets the raw request body.
/// </summary>
/// <returns>Returns the byte[] representation of the response

body.</returns>
public byte[] GetRawResponseBody();

}
/// <summary>
/// Name/value pair representation.
/// </summary>
public class NameValuePair
{

/// <summary>
/// The name.
/// </summary>
public string Name { get; }
/// <summary>
/// The value.
/// </summary>
public string Value { get; }

}

See the subsequent section for examples of external components.

8.4.5.1 Save Response Example

The following examples demonstrates how to create an external component that saves requested
excel files from the server. Here are the steps:

1. Implement the IExternalComponent.OnAfterResponse(RuntimeSession) method.

2. Determine the URL of the response that contains the excel file to save.

User Guide v1

ADVANCED TOPICS - EXTENSIBILITY 359

3. Create a unique name of the location or file name of the file to be saved.

4. Save the response body to disk.

Tabelle 10 Save Response Example

public class SaveExcelResponse : IExternalComponent
{

void IExternalComponent.OnTestStart()
{

//--- Not necessary.
}
void IExternalComponent.OnTestEnd()
{

//--- Not necessary.
}
void IExternalComponent.OnBeforeRequest(RuntimeSession session)
{

//--- Not necessary.
}
void IExternalComponent.OnAfterResponse(RuntimeSession session)
{

if (session.Url.LocalPath == "/file.xlsx" &&
session.ResponseCode == 200)//find the proper response

and make sure it's a success response.
{

byte[] response = session.GetRawResponseBody();
if (response.Length > 0)
{

string fileName = string.Format("file_{0}_{1}.xlsx",
session.VUNumber, session.IterationNumber); //give unique name

string path =
System.IO.Path.Combine("C:\\DownloadedFiles", fileName);

using (System.IO.FileStream fs =
System.IO.File.Open(path, System.IO.FileMode.CreateNew))

{
fs.Write(response, 0, response.Length); //write

file
}

}
}

}
}

User Guide v1

ADVANCED TOPICS - EXTENSIBILITY 360

